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Abstract— A Tesla turbine has a different approach in producing torque than a bladed turbine. Frictional 

forces applied by the working fluid onto a disk make the rotor spin and torque is produced. The advantage in 

such design is that, no object hinders the flow path of a fluid element and particle laden flows can be used to 

operate the turbine. Therefore, condensation within the turbine is possible. Condensation is necessary to 

reduce the rising fluid velocity towards the outlet which accounts for high energetic losses, and decrease the 

turbine efficiency. In this article, the utilization and maintaining of a thin liquid condensate film at the outlet 

of a Tesla turbine gap is investigated. Therefore, a developed analytic model is compared to a numeric 

simulation. The outcome of both, simulation and analytic solution is, that the film can be maintained if the 

radial gas velocity is sufficient.  
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I. INTRODUCTION 

A Tesla turbine has a different approach to produce torque than a conventional, bladed 

turbine. The torque is produced by frictional forces applied to a disk surface. Imagine a fluid 

that flows adjacent to a surface which is not fixed (i.e. it can move in any direction). The 

surface is dragged along with the flow due to the adhesion of the fluid on the surface. The 

resulting drag is depended on and the fluid viscosity. The same principle applies in a Tesla 

turbine where the surface is a disk which can rotate. In accordance to Tesla’s patent, the 

turbine consists of several disks, which are arranged plane parallel on a shaft. The gap 

between these disks,is dependent on the viscosity of the working fluid entering the gap with a 

high tangential velocity at the outer perimeter. The fluid continues its way on a spiralling path 

towards the outlet located at the centre of the disks. Due to frictional forces caused by the 

viscosity of the working fluid, the rotor starts spinning and atorque is produced[1]. Fig. 

1,shows the original drawing from the patent application of Tesla. It is possible to seethe 

rotor and the outlet in the centre of the disks. Furthermore, the original Tesla design has two 

inlet valves, allowing the turbine to rotate in different directions. The turbine was never a 

commercial success and isregarded as a “lost invention” nowadays. 

 



Roberto Lisker et al., International Journal of Ad

© 2017, IJARIDEA All Rights Reserv

Fig. 

One reason for the commercia

this claim is the outlet design 

velocities at the outlet [2, 3].B

simple design implies for low

processes. The high surface area

processes and the gap between 

laden flows. The rising velociti

problem. The specific volume of 

the outlet and the through-flow a

specific volume needs to be redu

fluid condenses, the volume flow

lower specific volume of the liq

condensation, a closed, thin liqui

flow towards the outlet. Within t

thickness on a Tesla turbine di

dynamic simulation.  

The first closed theory about film

thickness and heat transfer in a w

[4]. Later, these models have b

[5].Stein researched the behaviou

He used a Volume of Fluid mode

film in radial direction is essenti

A more recent investigation on th

gap has been carried out by Mel

in a friction turbine gap and show

Besides the flow field, there is f

the flow between two parallel ro

discussed in the scientific literatu

a single rotating disk, surrounde

surface. Heat transfer values and

and Shevchuk[8–10]. The second

same or different angular speed.

steam is pushed toward the outer

surface. Such a system has bee

 

 

ISSN(O

 

Advanced  Research in Innovative  Discoveries in Engineering and Applic

Vol.2, Issue 4,27 August 2017, pg. 1-8 

rved                                                                                      

 
g. 1original drawing of Nikola Tesla’s turbine [1] 

ial failure is the claimed low turbine efficiency.T

n and the resulting high energetic losses due 

But the advantages of the turbine design are a

w production costs and the use of simple m

rea of the diskmakes this turbine type suited to 

n the disk without any obstacles allows the usag

ities and energetic losses towards the outlet are

of the working fluid increases (due to expansion) o

 area is reduced as the radius decreases. To overc

duced.If the conditions at the outlet are such that

low of the gas phase would decrease dramatical

liquid phase and thus, the velocities decrease. A

uid film develops on the disk surface and is push

n this article, a simple model is presented to calcu

disk. The model is then compared to a compu

ilm condensation was presented by Nusselt. He c

a water film on a vertical plate under the influen

 been refined and transferred to tubular and tur

iour of a thin liquid film on the surface of a Tesla

del to simulate a water film and showed, that the

tial, since the rising centrifugal forces can disrup

 the behaviour of a liquid film at the outlet of a fr

eller:He tried to model the laminar film condens

owed that a fluid film can be maintained in the o

s few literature about condensation in Tesla turbi

 rotating disks from the centre to the outer perime

ature. Two systems of importance can be identifie

ded by a gaseous fluid which must condense o

nd film thicknesses have been given by Beckett

nd system is made of two parallel disks, rotating

d. Due to the rotation and the centrifugal force, 

er perimeter and a condensate film develops on th

een investigated by Al Assadi et aland Shevch

(Online): 2456-8805  

lications[IJARIDEA] 

           2 

The reason for 

e to the rising 

 apparent. The 

 manufacturing 

 heat transfer 

sage of particle 

e a continuity 

) on the way to 

ercome this, the 

hat the working 

ally due to the 

Assuming film 

shed by the gas 

lculate the film 

putational fluid 

e calculated the 

ence of gravity 

turbulent flows 

la turbine disk. 

he length of the 

upt the film[6]. 

 friction turbine 

nsation process 

 outlet area [7]. 

rbines, whereas 

meter is widely 

ied. The first is 

e onto the disk 

ett et al., Kahn 

ng at either the 

e, the saturated 

 the cooled disc 

chuck[11, 12].  



ISSN(Online): 2456-8805  

 

Roberto Lisker et al., International Journal of Advanced  Research in Innovative  Discoveries in Engineering and Applications[IJARIDEA] 

Vol.2, Issue 4,27 August 2017, pg. 1-8 

© 2017, IJARIDEA All Rights Reserved                                                                                              3 
 

II. LAMINAR THIN FILM CONDENSATION 

Hereafter, a simplified model for the forming of a thin liquid film on a rotating disk is 

presented. The laminarfluid film should be thin and present in the outlet area of the friction 

turbine. The thin liquid film at the outlet region is governed by the gas flow in radial direction 

and the centrifugal force opposing the gas flow. To prevent the spreading of the film across 

the disk, due to the rotation of it, the balance between the centrifugal force, catapulting the 

film towards the outer disk perimeter and the applied drag from the gaseous working fluid, 

pushing it towards the outlet,must be considered. If the drag force of the gas flow is higher 

than the centrifugal force, the fluid film is flushed towards the outlet. On the contrary, if the 

centrifugal force prevails, the film starts spreading all over the disc. For the application in a 

Tesla turbine the fluid film must be very thin due to the small gap width and the influence of 

the centrifugal force caused by the tangential velocity of the gas flow. Furthermore, if a thin 

film is used, it underlies the impact of the centrifugal force caused by the disk and not the gas 

flow due to the film thickness. If the film thickness is high, two cases are possible. Firstly, the 

centrifugal force dominates and droplets will be torn off the film or the film is disrupted and 

catapulted towards the gap inlet.Secondly, if the film thickness on both sides of the disk is in 

such range that the fluid films unite, the turbine clogs since no throughflow in the gap is 

present. The force balance of a fluid element in the liquid film at the liquid-gas phase 

interface is presented in equation 1. ���� = ����	
           (1) 

In this equation � is the shear stress on the fluid element coming from the gas flow, r is the 

radius, �
 is the rotation rate of the disk and ��is the density of the fluid film. The coupling 

of the gas flow and the liquid film is realized at the liquid-gas interface by equation 2. 

�� ������� = �
 ��������           (2) 

Here, w is the film velocity and cr is the gas velocity in radial direction. With the energy 

equation, the film thickness can be determined with equation 3. 

�(�) = � ���
�
������ (����
��(�)!"#
���)
�

         (3) 

In equation 3, Ja is the Jakob number, Pr the Prandtl number and Re the Reynolds number of 

the thin film. Within the brackets of the denominator of equation 3, the interface velocity $%  

is present. If the interface velocity is zero or higher the film is maintained or flushed towards 

the outlet of the gap at the centre of the disk. If the interface velocity is below zero, no drag is 

applied to the film, the centrifugal forces prevail and the film is thrown towards the outer disk 

perimeter. In the following figure, the film thickness is plotted for a rotation rate of 3000 rpm. 

The straight line indicates a rising interface velocity over the film length. Here, at the 

beginning, the interface velocity is low, allowing the formation of a bulge. At the end the 

interface velocity rises and thus, the film thickness decreases. The dashed, dotted and dashed-

dotted lines represents a constant interface velocity. Here, the film thickness rises towards the 

end due to the proportional lower interface velocity. 
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the 60 m s-1 simulation with the analytic model, right; contour plot of the 
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