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A theory of Tesla disc turbines

Sayantan Sengupta and Abhijit Guha

Abstract

In the present article, a mathematical theory for the flow field within a Tesla disc turbine has been formulated in the
appropriate cylindrical co-ordinate system. The basis of the theory is the Navier–Stokes equations simplified by a

systematic order of magnitude analysis. The presented theory can compute three-dimensional variation of the radial

velocity, tangential velocity and pressure of the fluid in the flow passages within the rotating discs. Differential equations

as well as closed-form analytical relations are derived. The present mathematical theory can predict torque, power

output and efficiency over a wide range of rotational speed of the rotor, in good agreement with recently published

experimental data. The performance of the turbine is characterized by conceptualizing the variation of load through the

non-dimensional ratio of the absolute tangential velocity of the jet and the peripheral speed of the rotor. The mathem-

atical model developed here is a simple but effective method of predicting the performance of a Tesla disc turbine along
with the three-dimensional flowfield within its range of applicability. A hypothesis is also presented that it may be possible

to exploit the effects of intelligently designed and manufactured surface roughness elements to enhance the performance

of a Tesla disc turbine.
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Introduction

Tesla turbine, a bladeless turbine, was patented by the

famous scientist Nikola Tesla (1856–1943) in 1913.1 Up

to now, a major stumbling block in its commercial use

has been its low efficiency and certain other operational

difficulties.2 However, there has been a resurgence of

research interest in this type of turbines3 because they

have several advantages (as explained below) and hence

may be appropriately developed and used in certain

niche application areas. In this article, an analytical

theory has been developed for predicting the perform-

ance of Tesla turbines, which agree well with experi-

mental results.

The Tesla turbine is also known as disc turbine

because the rotor of this turbine is formed by a series

of flat, parallel, co-rotating discs, which are closely

spaced and attached to a central shaft.2 The working

fluid is injected nearly tangentially to the rotor by

means of inlet nozzle. The injected fluid, which passes

through the narrow gaps between the discs, approaches

spirally towards the exhaust port located at the centre

of each disc. The viscous drag force, produced due to

the relative velocity between the rotor and the working

fluid, causes the rotor to rotate. There is a housing

surrounding the rotor, with a small radial and axial

clearance.

Tesla turbine has several important advantages: it

is easy to manufacture, maintain and balance the

turbine, and it has high power to weight ratio, low

cost, significant reduction in emissions and noise level,

a simple configuration which means an inexpensive

motor. Tesla turbine can generate power for a variety

of working media3 like Newtonian fluids, non-

Newtonian fluids, mixed fluids, particle laden two-

phase flows (many aspects of two-phase flow may be

found in Guha4,5). This turbine has self-cleaning nature

due the centrifugal force field. This makes it possible to

operate the turbine in case of non-conventional fuels

like biomass which produce solid particles. It also sug-

gests that this bladeless turbine can be well suited to
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generate power in geothermal power stations.6

Tesla turbo-machinery can also be used as a compres-

sor by modifying the housing and powering the rotor

from an external source. Moreover, it can operate

either in the clockwise or anticlockwise direction.

However, a Tesla disc turbine has not yet been used

commercially due to its low efficiency and other oper-

ational difficulties.2 Further research and modification

of Tesla turbine were temporarily suppressed after the

invention of gas turbine which was much more efficient

than Tesla turbine. From 1950 onwards both theoret-

ical and experimental research on Tesla turbine, Tesla

pump, Tesla fan and Tesla compressor has been regen-

erated.7 Quite a number of analytical models for the

conventional configuration of Tesla turbine have been

developed. Among all these approaches available

in the literature, bulk parameter analysis,8–10 truncated

series substitution methodology,11 integral method,12

and finite difference solutions13,14 are worth mention-

ing. Solutions are mainly available for incompressible

flows although there are some papers containing solu-

tions for compressible flows.15,16

Currently the field of micro-turbine is an active

research area; the bladeless Tesla turbine because of

its simplicity and robustness of structure, low cost

and comparatively better operation at high rpm may

become a suitable candidate for this application. For

this to happen the efficiency of the Tesla turbine, how-

ever, has to be improved. Researchers are attempting to

achieve this by modification of the configuration of the

conventional Tesla turbines (see, for example, Guha

and Smiley3).

After the success of Whittle and von Ohain, the gas

turbine became the centerpoint of research and devel-

opment and the understanding of its performance and

optimization has reached quite a mature stage.17–23 The

understanding of the performance of Tesla turbines is

not nearly as thorough. The present authors would

argue that the development of a reliable and compre-

hensive (and yet simple, if possible, for practical engin-

eering use) mathematical theory is an important step

towards developing the necessary understanding of

the fluid dynamics of the Tesla disc turbine.

The objective of the present work is to formulate

a mathematical theory for a Tesla turbine, developed

in the appropriate cylindrical co-ordinate system. The

geometric and flow configuration for the present study

is chosen to be the same as that given in Lemma et al.24

because they provide data from their recent experi-

ments which can be used to verify the mathematical

model and for the claimed superiority in its perform-

ance. Their experimental results show that this particu-

lar configuration of Tesla turbine has an isentropic

efficiency of about 18–25% which is achieved by

using rotor with only nine discs (diameter 0.05m) and

compressed air as the working fluid. More details about

the configuration are discussed later.

Deam et al.25 have attempted to develop a simple

analytical model for the configuration given in Lemma

et al.,24 considering incompressible and one dimensional

flow. A limitation of their theory is the absence of the

radial flow feature. Moreover, their theory can only pre-

dict the no-loss maximum efficiency of the turbine

(assuming the fluid is flown through a duct with uniform

cross section between a pressure reservoir and the

atmosphere). In their theory25 the no-loss maximum effi-

ciency is attainable when the rotor velocity is equal to the

velocity of the working fluid. This, however, does not

happen in reality because, if there is no relative velocity

between the disc-rotor and the working fluid, the viscous

drag force will be zero and in consequence, there will be

no power output. The scope of the present work is to

develop an analytical model for a more realistic case

considering three-dimensional flow and consequences

of the viscous drag force. The model can compute the

three-dimensional variation of the radial velocity, tan-

gential velocity and pressure of the fluid in the flow pas-

sages within the rotating discs. Differential equations as

well as closed-form analytical relations have been

derived. The present mathematical model can predict

torque, power output and efficiency over a wide range

of rotational speed of the rotor.

Mathematical analysis

In this section, a new mathematical theory for the per-

formance of Tesla turbine is formulated. The flow con-

figuration used for this purpose is the same as that of

Lemma et al.24

Description of the flow path

The domain for the mathematical solution is the three-

dimensional space (Figure 1) between two circular rotor

discs separated axially (i.e. in the z-direction) by a dis-

tance b. The rotor inlet is situated along the periphery

of the discs (i.e. at radius r2). The rotor outlet is at the

centre of the discs (at radius r1). Surrounding the rotor,

there is a plenum chamber, the area of which reduces

such that flow rate is uniform throughout the periph-

ery. This signifies that at the rotor inlet both tangential

and radial components of the velocity are uniform

(i.e. the velocities are not a function of �).

Viscous drag and its consequences

For establishing the mathematical model of the Tesla

turbine the flow physics through the rotor discs should

be well understood. The basic principle is that the vis-

cous drag force between a solid and a fluid acts in the
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direction of the relative velocity of the fluid. Suppose a

solid object is moving at a velocity U through a station-

ary fluid. As the relative velocity of the fluid is –U,

therefore the viscous drag force opposes the motion

of the solid object. Now, consider a case when the

fluid as well as the solid moves at the same velocity

U. The relative velocity of the fluid is zero, hence

there will be no viscous drag force. If the fluid and

the solid move in the same direction, their absolute

velocities being V and U respectively, then the condi-

tion (V – U)> 0 would mean that the relative velocity

of the fluid is positive: the viscous drag force will there-

fore try to enhance the velocity of the solid in this case.

This is what happens in the Tesla disc turbine. As the

turbine starts from stationary condition, the fluid enters

nearly tangentially at a high velocity into the stationary

rotor through the outer periphery of the discs. So the

drag force on the discs of the rotor will act in the dir-

ection of fluid flow. Since there is a relative velocity

between the working fluid and the disc wall there

exists a velocity gradient near the wall. This velocity

gradient is responsible for the generation of shear

stress which in turn develops a torque on the rotor. If

this torque is greater than the frictional torque, the

rotor will start rotating. As the rotor speed increases,

the relative velocity of the fluid with respect to the disc

decreases. This gradually decreases the angular acceler-

ation of the rotor. Ultimately a steady state will arise

when the rotor rotates at a constant speed at which the

frictional torque is just balanced by the torque pro-

duced. If the turbine is loaded, the rotational speed of

the rotor at steady state will be less than the steady

rotational speed at no load for the same inlet condition.

This implies that at steady state the relative tangential

velocity of the working fluid with respect to the discs

will increase when the load on the turbine increases.

This concept has been utilized in this work to calculate

the power output at different steady states, under vari-

ous load conditions.

Assumptions

The working fluid leaving from nozzle has a high linear

momentum. This linear momentum transforms into

angular momentum in the plenum chamber. The fluid

has mainly tangential and radial velocities while it

enters through the narrow gap between the discs.

As the fluid moves towards the center of the discs, its

radial velocity increases due to the gradual decrease of

the flow area. The fluid follows a spiral path from the

inlet up to the central exit. To visualize this process

clearly, the fluid pathlines were computed numerically

by Lagrangian tracking calculations performed by the

commercially available computational fluid dynamics

(CFD) software Fluent 6.3. Figure 2 shows the results

of such computations, where spiral paths lines for

2:77� 104 fluid particles are superposed.

In order to make the complex flow amenable to an

analytical theory, a few assumptions are made: (1) the

fluid is Newtonian with constant properties, (2) the

flow is steady, (3) the flow is axisymmetric, (4) axial

(z-direction) velocity is negligible compared to the

radial and tangential velocities, (5) radial gradients

are smaller than the axial gradients, (6) body forces

along r and � directions are negligible, (7) the flow is

laminar, (8) flow characteristics between any two discs

of the rotor are the same. Hence a theoretical model of

the flow between two discs is developed here. The

torque and power developed by the flow through two

discs can then be calculated. The total torque and

power from the whole rotor assembly are then calcu-

lated by the multiplying these quantities for one inter-

disc gap with the number of inter-disc gaps available.

Since the gap between two consecutive discs is very

small compared to other dimensions of the disc

(Figure 1), the vena-contracta effect at entry has not

been included in the analysis here. The fluid dynamics

of the flow at the exit from the inter-disc gaps is com-

plex – Hoya and Guha2 have given an extensive discus-

sion of this topic. Accurate determination of the loss

due to this complex exit flow is difficult and work is in

progress to develop a quantitative prediction method.

It is also assumed here that the surface of the disc is

smooth. However, there are a large number of recent

experimental and numerical studies which show that

roughness elements can strongly affect the flow through

a micro-channel (the small gap between two adjacent

discs may make the flow domain in a Tesla turbine

a ‘‘micro-channel’’). These references suggest that the

surface roughness elements can reduce the flow transi-

tion Reynolds number, enhance frictional drag,

i.e. wall shear stress (more so than their effect in

Figure 1. Schematic diagram of the domain for the

mathematical solution. (The gap within the two discs, in relation

to the radius, is exaggerated in the sketch for clarity).
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macro-channels), and alter the velocity profile.

Kandilikar et al.,26 for example, extended the conven-

tional Moody diagram to values of relative roughness

greater than 0.05 and showed that flow constriction

effect in micro-channel becomes important when

the relative roughness is greater than 0.05. Other than

the relative roughness which gives a simple average

measure of the height of the roughness elements,

the spectrum of sizes, shapes and orientations of the

roughness elements and their spatial distribution

would affect the detailed fluid dynamics, including the

velocity profile and wall shear stress, of the flow within

the inter-disc gaps of a Tesla turbine. These flow fea-

tures would be included in a more comprehensive the-

oretical treatment in the future. It follows from this

discussion that it may be possible to exploit the effects

of intelligently designed and manufactured surface

roughness elements to enhance the performance of a

Tesla disc turbine.

Mathematical formulation

The analysis begins with the Navier–Stokes equations

in the cylindrical co-ordinate system. The continu-

ity equation, the momentum equations and bound-

ary conditions are written in terms of relative

velocities. For this purpose the following relations

between the absolute and relative velocities are

used. Ur ¼ Vr;Uz ¼ Vz;U� ¼ V� þ� � rð Þ. Using the

assumptions listed above and an order of magnitude

analysis (Appendix 2), the conservation equations take

the following simplified form

Continuity equation
@Vr

@r
þ
Vr

r
¼ 0 ð1Þ

� �Momentum equation Vr

@V�

@r
þ
VrV�

r
þ 2�Vr

¼ �
@2V�

@z2

ð2Þ

r�Momentum equation Vr

@Vr

@r
��2r� 2�V� �

V�
2

r

¼ �
1

�

dp

dr
þ �

@2Vr

@z2
ð3Þ

z�Momentum equation
@P

@z
¼ 0 ð4Þ

Boundary conditions

at r ¼ r2 Vr ¼ Vr2 V� ¼ V�2 ð5Þ

at z ¼ 0 Vr ¼ 0 V� ¼ 0 ð6Þ

at z ¼ b Vr ¼ 0 V� ¼ 0 ð7Þ

at z ¼ b=2
@Vr

@z
¼

@V�

@z
¼ 0 ð8Þ

Within the boundary layer developed on the flat

solid discs, the relative tangential and radial velocities

at any radius between r1 and r2 can be modelled as

V�ðr, zÞ ¼ V�2�ðRÞGðzÞ ð9Þ

Vrðr, zÞ ¼ Vr2�ðRÞHðzÞ ð10Þ

where,

R ¼
r

r2
, �ðRÞ ¼

V�ðrÞ

V�2

, �ðRÞ ¼
VrðrÞ

Vr2

GðzÞ ¼
V�ðr, zÞ

V�ðrÞ
, HðzÞ ¼

Vrðr, zÞ

VrðrÞ

G and H are respectively the z-variation of tangential

and radial velocities within the boundary layers. Here

we assume that the velocity profile of the fully devel-

oped flow is parabolic in nature. Accordingly, G and H

are as expressed as

G ¼ 6 �
z

b
1�

z

b

� �

ð11Þ

H ¼ 6 �
z

b
1�

z

b

� �

ð12Þ

where b is the gap between the two discs. For a

throughflow situation (i.e. when the inlet velocity is in

the radial direction), Matveev and Pustovalov27 and

Figure 2. Fluid path lines computed in Fluent colored by par-

ticle ID in grey scale.
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Boyd and Rice14 had assumed the same relation as

equation (12) for the variation of the radial velocity.

The computed torque and power from the present

theory will depend strongly on the variation of the tan-

gential component of the velocity (hence on G through

equation (11)). Therefore, in order to assess the validity

of equation (11), a numerical simulation of the flow

through two discs is carried out here with the help of

the software Fluent 6.3. The flow geometry for this

numerical simulation is taken to be the same as that

of the experimental set up of Lemma et al.24 For this

numerical simulation, each disc has an outer radius of

25mm and an inner radius of 13.2mm, and a rotational

speed of 1000 rad/s for the two discs is used. At inlet,

the tangential velocity is specified as 106m/s and the

radial velocity is �11.5m/s. Outlet boundary condition

at central exit is modelled as pressure outlet with zero

gauge pressure. No slip boundary condition is set on

the disc walls. A grid-independence test has been car-

ried out by grid adaptation technique. A total of

9,652,417 tetrahedral computational cells are used for

the results presented below.

The tangential velocity computed by Fluent is shown

in Figure 3 at three representative radial locations. The

corresponding values of the tangential velocity as pre-

dicted by the assumed relation (equation (11)) are also

shown in the same figure for a direct comparison. Since

the torque (and hence the power) depends on the axial

gradient of the relative tangential velocity (@V�=@z), the
corresponding quantity from the Fluent simulation

(@U�=@z) is shown in Figure 4. The plot is given in the

close vicinity of the solidwall to examine the details of the

flow features that determine the wall shear stress. It can

be seen from Figure 4 that, at all three radial locations,

the variation of @U�=@z is linear. FromFigures 3 and 4, it

can be concluded that a parabolic variation (equation

(11)) is an adequate representation at the close vicinity

of the wall, which determines the shear stress at the wall.

Integration of the continuity equation

Equations (9) and (10) show that in order to determine

Vr and V� completely, one needs to find out �ðRÞ and
�ðRÞ. Integrating the differential form of the continuity

equation (1), one can get �ðRÞ.

Z

h

0

Z

r

r2

@ rVrð Þ

@r
�r�z ¼ 0 ð13Þ

Equation (13) leads to

� Rð Þ ¼
VrðrÞ

Vr2

¼
r2

r
ð14Þ

Figure 5 shows the variation of � from inlet to the

rotor up to the central exit. The value of � increases

from the inlet to the central exit since the cross-sectional

area varies inversely with radius. Figure 6 shows the

three dimensional variation of non-dimensional radial

velocity, as predicted by equation (10), in the domain

of the mathematical solution.

Lemma et al.24 produced a set of experimental results

for which they had kept the nozzle inlet pressure

fixed and varied the load so that the rotor attained

the steady state at various values of the rotational

speed �. The pressure drop through the rotor, �pic,
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Figure 3. Verification of one of the assumptions: comparison of

assumed profile of tangential velocity with that predicted by

Fluent.

Keys: at a radius of 23mm (equation 11), at a radius of

23mm (from Fluent), at a radius of 17mm (equation 11),

at a radius of 17mm (from Fluent), at a radius of 15mm

(equation 11), at a radius of 15mm (from Fluent).

Figure 4. Verification of one of the assumptions: @U�ðr, zÞ
@z versus

distance from the disc wall, as computed by Fluent.

Keys: gradient calculated at a radius of 23mm (close to

inlet), gradient calculated at a radius of 17mm,

gradient calculated at a radius of 15mm (close to outlet).
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is a function of � as well as the mass flow rate

through the rotor (i.e. Vr2). (See the prediction of the

present theory later for a quantitative appreciation of

this fact.) �pic tends to increase with increasing �.

Therefore, the mass flow rate (hence Vr2) would have

to decrease correspondingly to keep �pic fixed at a

given value. Lemma et al.24 measured this variation in

Vr2 and found that, for a particular pressure drop

between the rotor inlet and the central exit, Vr2 is max-

imum when the rotor is stationary and its magnitude

decreases linearly (up to 0.7 bar pressure drop) with �

as given by:

�Vr2 ¼ A� B�: ð15Þ

In equation (15), A is the maximum inlet radial

velocity for stationary rotor, and B is the slope to

be determined by the ratio of the maximum inlet

radial velocity for stationary rotor (A) to the rota-

tional speed of rotor for which no flow condition is

arrived (�0).

Integration of the r and � momentum equations

We introduce the following three non-dimensional vari-

ables for further theoretical development

p0 ¼
p� p2

��2r22
, �2 ¼

Vr2

�r2
, 	 ¼

U�2

�r2
ð16Þ

The � -momentum equation (2) is integrated par-

tially (Appendix 3) with respect to z over the domain

(0, b/2), giving

d�

dR
¼ �

1

R
þ 10 �

�

�b2

� �

�
R

�2

� �

� �
10

6 	 � 1ð Þ
ð17Þ

The r-momentum equation (3) is integrated partially

(Appendix 3) with respect to z over the domain (0, b/2),

resulting in

dp0

dR
¼Rþ2 	�1ð Þ�þ

6

5
	�1ð Þ2

�2

R
þ
6

5

�2
2

R3
�12

�

�b2

� ��2

R

ð18Þ

Equation (15) is substituted in the equations (17) and

(18) and these two ODEs are solved for the initial con-

ditions given below

At R ¼ 1; � ¼ 1 ð19Þ

At R ¼ 1; p0 ¼ 0 ð20Þ

The solutions of the above two equations (17) and

(18) will give � and p0. Equations (17) and (18) can be

integrated simultaneously by numerical means. A

simple iterative scheme may be adopted as follows.

Assume a value of 	 for which the steady state solution

is sought. Start with a trial value of �. Equations (17)

and (18) are then numerically integrated from the rotor

inlet to the central exit. The computed value of the

pressure drop will not, in general, agree with the

Figure 5. Prediction of the present theory for the variation of

non-dimensional z-averaged relative velocity from inlet (R¼ 1)

to central exit (R¼ 0.528) for various values of tangential

speed ratio 	:
Keys for tangential component �: 	 ¼ 1:5,
	 ¼ 3, 	 ¼ 7; Solid line represents radial component �
for all 	. For all calculations �pic ¼ 0:113 bar.

Figure 6. Prediction of the present theory for the variation

of Vr
Vr2

(non-dimensional relative radial velocity) in the

three-dimensional domain. For all calculations, �pic ¼ 0:113 bar.
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imposed value of �pic. The value of � is then system-

atically varied until the iteration converges to the given

value of �pic. The same procedure is repeated for vari-

ous values of 	.
It is noted that when 	 is prescribed, equations (17)

and (18) can be integrated analytically to find the vari-

ation of V� as well as �pic. Analytical integration of

equation (17) gives

� ¼
C3

R
þ
C4 exp � C1R

2

2

h i

R
ð21Þ

where

C1¼
10�

�2�b2
,C2¼

�10

6 	�1ð Þ
,C3¼

C2

C1

,C4¼ 1�C3ð Þexp
C1

2

� �

The variation in � from the rotor inlet to the cen-

tral exit, for various values of 	, is shown in Figure 5.

It can be observed from this figure that for lower values

of 	 (such as 1.5) � increases monotonically from inlet

to the central exit; but for higher values of 	 (such as 3,

7), � at first decreases then increases. This happens

because there are two opposing effects that tend

to change the value of � : � tends to decrease due to

the effect of viscous drag (friction) and tends to

increase due to the conservation of angular momentum.

As it is discussed in the ‘Viscous drag and its conse-

quences’ section viscous drag force is proportional

to the relative tangential velocity of the working fluid

(V�). For a high value of 	, the relative tangential

velocity is high, therefore the effect of friction may

supersede the effect of conservation of angular momen-

tum. This is why, when 	 is high, � initially decreases

from the inlet up to a certain value of R at which �
attains its minimum value. At lower values of R, �
increases again as the effect of the angular momentum

conservation starts to dominate. The three-dimensional

variation of the non-dimensional relative tangential vel-

ocity V� is shown in Figures 7 and 8 for 	 ¼ 1:5 and

	 ¼ 7 respectively.

Substituting the expression of � from the equa-

tion (21) into the equation (18), dp0

dR
is calculated

from the rotor inlet to the central exit for various

values of 	. Figure 9 shows that the variation in
dp0

dR
from R ¼ 1 (rotor inlet) to R ¼ 0:528 (central

exit) at lower value of 	 is less than that at higher

value of 	.
Analytical integration of equation (18) gives

p0 ¼ p0k Rð Þ þ C6I1 þ C8I2 þ C9I3 þ C12 ð22Þ

where

p0k Rð Þ¼
R2

2
þ C5þC11ð ÞlnR�

1

2R2
C7þC10ð Þ

I1¼
1

2
ln

�C1R
2

2

� 	

þ
X

1

1

�C1R
2

2

� �nþ1

ðnþ1Þðnþ1Þ!

2

6

4

3

7

5

I2¼
C1 expð�C1R

2Þ

�2C1R2
�
C1

2
ln �C1R

2

 �

þ
X

1

1

�C1R
2


 �nþ1

ðnþ1Þðnþ1Þ!

" #

I3¼
C1 exp �C1R

2

2

h i

�2C1R2
�
C1

4
ln

�C1R
2

2

� 	

þ
X

1

1

�C1R
2

2

� �nþ1

ðnþ1Þðnþ1Þ!

2

6

4

3

7

5

C5 ¼ 2ð	 � 1ÞC3,C6 ¼ 2ð	 � 1ÞC4

C7 ¼
6

5
ð	 � 1Þ2C2

3,C8 ¼
6

5
ð	 � 1Þ2C2

4

C9 ¼
12

5
	 � 1ð Þ2C3C4,C10 ¼

6

5
�2
2,C11 ¼

�12��2

�b2

C12 ¼ � p0kðRÞ þ C6I1 þ C8I2 þ C9I3

 �

R¼R1

It is instructive to note here that at the central exit,

p ¼ p2, therefore p
0 ¼ 0; at inlet, p0 ¼ �pic=ð��

2r22Þ. It is

to be remembered that �pic was kept fixed for a given

set of experiments;24 this is how the numerical predic-

tions of the present theory have been presented in vari-

ous figures in order to be compatible with the

experiments.

Figure 7. Prediction of the present theory for the variation

of V�
V�2

(non-dimensional relative tangential velocity) in the

three-dimensional domain. �pic ¼ 0:113 bar and 	 ¼ 1:5.

656 Proc IMechE Part A: J Power and Energy 226(5)



Calculation of power output and efficiency

�(R) is known from equation (21), hence V�ðr, zÞ can be

found out from equation (9). (This is how the variation

in V�ðr, zÞ has been plotted in Figures 7 and 8.) From

the known distribution in tangential velocity, the total

torque and power output of the rotor can be calculated

by the following steps.

Wall shear stress on one side of a single disc is

given by


wðrÞ ¼ �
@V�ðr, zÞ

@z

� �

at z¼0

¼ �
@ V�2�ðRÞGðzÞ
� 


@z

� �

at z¼0

¼
6�V�2�ðRÞ

b
ð23Þ

Consider an elemental circular strip of thickness dr

at a radius r. The torque about the rotor axis of the

shear force acting on this elemental area is equal to


wð2�rdrÞðrÞ. The torque on one side of a single disc

can be calculated by integrating the elemental torque,

and is given by

= ¼

Z

r2

r1


w 2�rð Þrdr ¼

Z

r2

r1

6�V�2�ðRÞ

b
2�rð Þrdr

¼
12��V�2r

3
2

b

� 	 Z

R2

R1

R2�ðRÞdR

¼
12��V�2r

3
2

b

� 	

C3ðR
2
2 � R2

1Þ �
C4

C1

�

� exp �
C1R

2
2

2

� 	

� exp �
C1R

2
1

2

� 	� ��

ð24Þ

The total torque produced by the complete rotor

consisting of nd discs is then calculated by

=tot ¼ 2 nd � 1ð Þ= ð25Þ

The theoretical ideal power output is then given by

W
�

th ¼ =tot �� ð26Þ

As already explained after equation (20), � at any

steady state is determined for a particular value of 	
and a constant pressure drop �pic. In the present

theory, the variation of the load is conceptualized

through 	 – the non-dimensional ratio of the absolute

tangential velocity of the jet and the peripheral speed of

the rotor. If the load varies, 	 at steady state will also

vary. Therefore the power output changes with the

change of load.

Theoretical power output with loss can be calculated

by subtracting the loss from W
�

th given by equation (26)

W
�

act ¼ W
�

th �W
�

loss ð27Þ

where W
�

loss is the overall loss in power output. A Tesla

disc turbine suffers from various kinds of losses; for

example bearing loss, leakage loss, windage loss,

losses due to irreversibility of nozzles, losses due to

uncontrolled diffusion in the exhaust process, losses

due to partial admission.28 Leakage loss occurs due to

the leakage flow through the bearing, seals and the

clearance gaps between the rotor and the housing.

Windage loss is due to the first and last disc rotating

within a nearly stagnant fluid. Loss due to partial

admission is caused because of finite thickness of the

Figure 9. Prediction of the present theory for the variation of
dp0

dR
from inlet (R¼1) to central exit (R¼0.528) for various values

of tangential speed ratio 	. For all calculations �pic ¼ 0:113 bar
Keys: 	 ¼ 1:5, 	 ¼ 3, 	 ¼ 7.

Figure 8. Prediction of the present theory for the variation

of V�
V�2

(non-dimensional relative tangential velocity) in the

three-dimensional domain. �pic ¼ 0:113 bar and 	 ¼ 7.
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discs and the interference of the edges of the discs. It is

difficult to theoretically estimate the magnitude of each

of these components of losses separately. In this work,

therefore, an experimentally determined correlation for

the overall loss is used.

Since the present theory is verified by comparing its

predictions with the experimental measurements

of Lemma et al.,24 the experimental correlation for

the overall loss provided in Lemma et al.,24 i.e.

W
�

loss / �, is used in the example calculations of isen-

tropic efficiency (given later in ‘Results and discussion’

section). However, it should be noted that the experi-

mental data of Lemma et al.24 show a large degree of

scatter and hence the accuracy of the linear correlation

suggested by them is questionable.

A simple but very effective method for measuring the

overall loss (the bearing and other losses), called the

‘‘angular acceleration method’’, has been developed in

Hoya and Guha.2 Their measurements showed that the

frictional torque (for the turbine tested) was a non-

linear function of �, the corresponding loss in power

was therefore also a non-linear function of � (if the

non-linearity in torque is expressed as a polynomial,

the loss in power will then be a polynomial of higher

order).

Efficiency of Tesla turbine. Hoya and Guha2 have shown

that, unlike the universal definition for efficiency of the

turbine in a gas turbine plant, various researchers use

different expressions for calculating the efficiency of

Tesla turbines. One therefore needs to be careful in

interpreting quoted values of efficiency of a Tesla tur-

bine. Since the prediction of the present theory will be

compared with the experiments of Lemma et al.,24 their

definition of the efficiency is adopted here


 ¼
W
�

act

W
�

isentropic

ð28Þ

The same expression forW
�

isentropic as used in Lemma

et al.24 is applied in equation (28) in the numerical

example calculations given later. It is shown below

that the definition used in Lemma et al.24 for isentropic

work is identical with what is used for a conventional

turbomachinery if the change in kinetic energy is neg-

lected. Noting that the inlet is denoted by suffix 2 and

the outlet is denoted by suffix 1, one can then write

W
�

isentropic ¼ _m h2 � h1ð Þ ¼ _mcpðT2 � T1Þ

¼ cp _mT1

T2

T1

� 1

� 	

¼
k

k� 1
p1Q1

p2

p1

� 	k�1
k

�1

" #

ð29Þ

where, Q is the total volume flow rate through all the

inter-disc spaces and can be calculated from

Q ¼ 2�rb nd � 1ð ÞVr ð30Þ

Condition for no torque. The net (integrated) effect of the

jet on the disc becomes zero when
R R2

R1
R2�ðRÞdR ¼ 0; at

this condition the jet produces no torque, and hence no

power. By substituting the expression for � given by

equation (21) into this condition and performing the

integration one can show that the no torque condition

arises at a particular value of 	 given by

	½ �no torque

¼1�
10

6

C1ðR
2
2
�R2

1
Þþexp C1

2

� �

exp �
C1R

2
2

2

� �

�exp �
C1R

2
1

2

� �n o

C1 exp
C1

2

� �

exp �
C1R

2
2

2

� �

�exp �
C1R

2
1

2

� �n o

2

6

4

3

7

5

ð31Þ

Results and discussion

General predictions of the present theory have already

been discussed in the sections ‘Integration of the con-

tinuity equation’ and ‘Integration of the r and �
momentum equations’. The two-dimensional and

three-dimensional variation of the three important par-

ameters – Vr, V� and p0 (relating to �pic) – are shown in

Figures 5 to 9.

In order to compare the present theory with experi-

mental measurements, the following geometric and flow

data are taken from Lemma et al.24: r1 ¼ 13.2mm, r2 ¼

25mm, nd¼9. For �pic ¼ 0.113 bar, overall loss in Watt

¼ 0.0001635 * rpm, and the value of constants A, B in

equation (15) required to calculate Vr2 are 13.32 and

0.0014, respectively.

For a particular pressure drop �pic between the

inlet and the central exit, if the load increases then

the steady state rotational speed of rotor decreases

from its highest value at no load condition. It has

been explained in the ‘Integration of the r and �
momentum equations’ section how the steady state

� is determined iteratively for given values of �pic
and 	. It has been described in the section

‘Calculation of power output and efficiency’, how

the theoretical power output curve versus rotational

speed can be constructed. Such prediction of theoret-

ical power output is shown in Figure 10 for

�pic ¼ 0:113 bar, where both the theoretical power

outputs with and without loss are included. Each com-

puted point in Figure 10 represents a steady state solu-

tion. In the same figure the experimental results of

Lemma et al.24 are also shown so that a direct com-

parison is possible. Considering the facts that there is
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considerable experimental uncertainty and that the

magnitude of the bearing and other losses is a very

substantial fraction of the power output (Figure 10), it

can be said that the simple theory developed here has

worked well.

From simple theoretical considerations, Hoya and

Guha2 have shown that = � =0 � c�, where =0 and c

are constants, and therefore the theoretical power

output is W
�

th ¼ =� ¼ =0�� c�2. This explains why

the power versus rotational speed curves in Figure 10

show the general shape of inverted buckets and the

power output produces a maxima. It can be seen that

the rotational speed at which the maxima occurs is dif-

ferent for the two theoretical power output curves – the

one which includes the loss and the other which does

not. Equation (27), using the linear correlation for

overall loss suggested by Lemma et al.,24 therefore

shows that W
�

act ¼ =0�� c�2 � d�, where d is another

constant. Hence the maxima for W
�

act occurs at a lower

rotational speed as compared to the maxima forW
�

th. In

this connection one should consider the discussion,

regarding the validity of the linear correlation for over-

all loss, given in the ‘Mathematical analysis’ section. In

particular, it may be noted that a simple but very effect-

ive method for measuring the overall loss (the bearing

and other losses), called the ‘‘angular acceleration

method’’, has been developed in Hoya and Guha.2

Their measurements showed that the frictional torque

(for the turbine tested) was a non-linear function of �,

the corresponding loss in power was therefore also a

non-linear function of � (if the non-linearity in torque

is expressed as a polynomial, the loss in power will then

be a polynomial of higher order).

Figure 10 shows that (for �pic ¼ 0:113 bar), the the-
oretical power output W

�

th is zero at 5592 rad/s. This

occurs when 	 ¼ 0:631, (this corresponds to the condi-

tion when there is no torque because of the action of the

fluid jet on the disc). �no torque ¼ 5592 rad=s thus cor-

responds to the steady-state condition under no load.

When the bearing and other parasitic losses are absent,

the no torque condition, the no load condition and the

no power condition all occur at the same steady rota-

tional speed of the rotor. However, when bearing and

other parasitic losses are present, an external agency

will actually have to supply the power (that is equal

to the losses) for the disc to rotate at the steady rota-

tional speed of 5592 rad/s. This is shown as the negative

power output in Figure 10. The power output with

losses becomes zero at 4950 rad/s, but at this point

the torque produced by the jet is non-zero.

Figure 11 shows the variation of the theoretical effi-

ciency of the Tesla disc turbine over a range of rota-

tional speed of the disc rotor. Like Figure 10, each

computed point in Figure 11 represents a steady state

solution. The maximum theoretical efficiency of the

nine discs rotor at �pic ¼ 0:113 bar is 21%. A study

of Figures 10 and 11 together shows that the point of

maximum efficiency occurs at a slightly different rota-

tional speed as compared to the point of maximum

power: this is so because the denominator used in the

particular definition of efficiency (equation (28)) also

depends on the rotational speed (as revealed by a con-

sideration of equations (29), (30) and (15)). In the same

Figure 11, the experimental values from Lemma et al.24

are superposed so that a direct comparison of the pre-

diction of the present theory with experiments is pos-

sible. In the context described in the third paragraph of

the ‘Results and discussion’ section, the present theory

compares well with experiments.

Figure 10. Comparison of the present theory with experi-

ment: variation of the power output of Tesla turbine with rota-

tional speed.

Keys: Theoretical ideal power output, Theoretical

power output with loss, m Experimental power output.24 Each

bullet represents a steady state. For all calculations and experi-

ments �pic ¼ 0:113 bar.

Figure 11. Comparison of the present theory with experi-

ment: variation of the efficiency (%) of Tesla turbine with rota-

tional speed.

Keys: Theoretical efficiency with loss as predicted by the

present theory, � � � � Efficiency of Tesla turbine from the

experiment.24 For all calculations and experiments

�pic ¼ 0:113 bar.
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Conclusion

A mathematical theory for the performance of a Tesla

disc turbine has been formulated here. The basis of the

theory is the Navier–Stokes equations simplified by a

systematic order of magnitude analysis resulting in the

present fundamental set of coupled differential equa-

tions (1) to (3) that govern the flow-field within a

Tesla disc turbine. The theoretical model can compute

the three-dimensional variation of the radial velocity,

tangential velocity and pressure of the fluid in the flow

passages within the rotating discs. The partial differen-

tial equations can be converted to ODEs by suitable

assumptions regarding non-dimensional velocity pro-

files; the coupled set of ODEs (equations (17) and

(18)) can be integrated by simple numerical schemes

(section ‘Integration of the r and � momentum equa-

tions’). Explicit, closed-form analytical results have also

been derived, giving Vr, V� and p as functions of two

co-ordinates r and z. The theoretical model can predict

torque, power output and efficiency, and compares well

with experimental results. A hypothesis is proposed

here that it may be possible to exploit the effects of

intelligently designed and manufactured surface rough-

ness elements to enhance the performance of a Tesla

disc turbine.
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Appendix 1

Notation

b gap between two consecutive discs

k isentropic index of fluid

_m mass flow rate

p pressure

P modified pressure¼ p� �gzz
p0 non-dimensional pressure ¼ p�p2

��2r2
2

Q volume flow rate

r radial coordinate

R non-dimensional radius (i.e. radius ratio) ¼ r
r2

U absolute velocity of fluid

V relative velocity of fluid

W
�

th theoretical ideal power output

W
�

loss overall loss in Tesla turbine

W
�

act theoretical power output with loss

z axial coordinate

	 tangential speed ratio ¼
U�2

�r2
�pic pressure drop between inlet and central exit of

the rotor

� non-dimensional average relative tangential

velocity¼ V�ðrÞ

V�2


 efficiency of the turbine

� Azimuthal direction in cylindrical co-ordinate

system

� viscosity of the working fluid

� kinematic viscosity of working fluid (here the

fluid is air)

� non-dimensional average relative radial

velocity ¼ VrðrÞ

Vr2

� density of the working fluid


w wall shear stress on one side of a single disc

�2 	
Vr2

�r2

V rotational speed of the disc

= torque on one side of a single disc

=tot total torque

Subscripts

r component along the r-direction

z component along the z-direction

� component along the �-direction
1 central exit of the rotor

2 at rotor inlet

Overbar

ð Þ z-averaged (z varies from 0 to b) flow variables

Appendix 2

1. Order of magnitude analysis of continuity equation

For steady, laminar, incompressible flow and con-

sidering a relative frame of reference, the continuity

equation in cylindrical co-ordinate system is

r � ~V ¼ 0

1

r

@

@r
rVrð Þ þ

1

r

@V�

@�
þ
@Vz

@z
¼ 0

According to assumption no. (4) enlisted in the

‘Assumptions’ section in the main text, @Vz

@z term is

neglected and considering assumption no. (3),
@V�

@� ¼ 0. Therefore the simplified from of the conti-

nuity equation becomes

1

r

@

@r
rVrð Þ ¼ 0

2. Order of magnitude analysis of � momentum

equation

Neglecting the body force term along the � direction
(with assumption no. (6)), the � momentum equa-

tion for incompressible flow29 is

�
DU�

Dt
þ
UrU�

r

� �

¼�
1

r

@p

@�
þ� r2U��

U�

r2
þ

2

r2
@Ur

@�

� �

where

DU�

Dt
¼

@U�

@t
þUr

@U�

@r
þ
U�

r

@U�

@�
þUz

@U�

@z

According to assumption no. (2), @U�

@t ¼ 0, consider-

ing assumption no. (3) U�

r
@U�

@� ¼ 0 and neglecting the

term Uz
@U�

@z with the help of assumption no. (4)

DU�

Dt
¼ Ur

@U�

@r
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Hence, the L.H.S. of the � momentum equation

becomes

� Ur

@U�

@r
þ
UrU�

r

� �

Now, in the R.H.S.

r2U� ¼
@2U�

@r2
þ
1

r

@U�

@r
þ
@2U�

@z2
þ

1

r2
@2U�

@�2

In the expression of r2U�,
@2U�

@r2
þ 1

r
@U�

@r

� �

55
@2U�

@z2

(assumption no. (5)), and 1
r2

@2U�

@�2
¼ 0 (assumption

no. (3)).

Also in the R.H.S., � 2
r2

@Ur

@� ¼ 0, @p
@� ¼ 0 (assumption

no. (3)).

According to assumption no. (5), U�

r2
55

@2U�

@z2
.

Taking all of the above considerations into account,

the R.H.S. of the � momentum equation can be

approximated by � @2U�

@z2
:

Substituting the relationship between the absolute

and relative velocity the � momentum equation

becomes

Vr

@V�

@r
þ
VrV�

r
þ 2�Vr ¼ �

@2V�

@z2

3. Order of magnitude analysis of z momentum

equation

Considering assumption no. (4) z momentum equa-

tion becomes

@P

@z
¼ 0 where,P ¼ p� �gzzð Þ

4. Order of magnitude analysis of r momentum

equation

Neglecting the body force term along the r direction

(with assumption no. (6)), the r momentum equa-

tion for incompressible flow29 is

�
DUr

Dt
�
U2

�

r

� �

¼ �
@p

@r
þ � r2Ur �

Ur

r2
�

2

r2
@U�

@�

� �

where

DUr

Dt
¼

@Ur

@t
þUr

@Ur

@r
þ
U�

r

@Ur

@�
þUz

@Ur

@z

According to assumption (2) @Ur

@t ¼ 0, considering

assumption (3) U�

r
@Ur

@� ¼ 0 and neglecting Uz
@Ur

@z with

the help of assumption no. (4), DUr

Dt
¼ Ur

@Ur

@r .

Hence the L.H.S. of the r momentum equation

becomes �
�

Ur
@Ur

@r �
U2

�

r

�

.

Now, in the R.H.S.

r2Ur ¼
@2Ur

@r2
þ
1

r

@Ur

@r
þ
@2Ur

@z2
þ

1

r2
@2Ur

@�2

In the expression of r2Ur,



@2Ur

@r2
þ 1

r
@Ur

@r

�

55
@2Ur

@z2

(assumption no. (5)), and 1
r2

@2Ur

@�2
¼ 0 (assumption

no. (3)).

Also in the R.H.S., � 2
r2

@U�

@� ¼ 0 (assumption no. (3))

and @p
@r ¼

@P
@r (assumption no. (6)), @P

@r ¼
dP
dr

(as, @P@� ¼ 0

and @P
@z ¼ 0), again, dP

dr
¼ dp

dr
(assumption no. (6)).

According to assumption no. (5), Ur

r2
55

@2Ur

@z2
.

Taking all of the above considerations into

account, the R.H.S. of the r momentum equation

can be approximated by � dp
dr
þ � @2Ur

@z2
.

Substituting the relationship between the absolute

and relative velocity the r momentum equation

becomes

Vr

@Vr

@r
��2r� 2�V� �

V�
2

r
¼ �

1

�

dp

dr
þ �

@2Vr

@z2

Appendix 3

1. Derivation of equation (17) from equation (2)

Vr

@V�

@r
þ
VrV�

r
þ 2�Vr ¼ �

@2V�

@z2

The �-momentum equation (2) is integrated par-

tially with respect to z over the domain (0, b/2)

Z

b
2

0

Vr

@V�

@r

� 	

�z ¼

Z

b
2

0

�
VrV�

r

� 	

�zþ

Z

b
2

0

�2�Vrð Þ�z

þ

Z

b
2

0

�
@2V�

@z2

� 	

�z
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Substituting the definitions of R, �2 and 	 as

mentioned in the nomenclature, Vr from equation

(10) and V� from equation (9), and integrating the

resulting equation one obtains

d�

dR
¼ �

1

R
þ 10 �

�

�b2

� �

�
R

�2

� �

� �
10

6 	 � 1ð Þ

2. Derivation of equation (18) from equation (3)

Vr

@Vr

@r
��2r�2�V��

V�
2

r
¼�

1

�

dp

dr
þ�

@2Vr

@z2

Or;
1

�

dp

dr
¼�Vr

@Vr

@r
þ�2rþ2�V�þ

V�
2

r
þ�

@2Vr

@z2

The r-momentum equation (3) is integrated par-

tially with respect to z over the domain (0, b/2)

�2r22
r2

Z

b
2

0

d p�p2
��2r2

2

� �

d r
r2

� � �z ¼

Z

b
2

0

�Vr

@Vr

@r
�zþ

Z

b
2

0

�2r�z

þ

Z

b
2

0

2�V��zþ

Z

b
2

0

V2
�

r
�zþ

Z

b
2

0

�
@2Vr

@z2
�z

Substituting the definitions of p0, �2 and 	 as men-

tioned in the nomenclature, Vr from equation (10)

and V� from equation (9), and integrating the result-

ing equation one obtains

dp0

dR
¼Rþ2 	�1ð Þ�þ

6

5
	�1ð Þ2

�2

R
þ
6

5

�2
2

R3
�12

�

�b2

� ��2

R
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