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Abstract

This work investigates fluid mechanical processes involving movement of shock-

waves inside channels. In particular, the prediction and control of shock motion in

intakes is of great importance to high-speed flight and future spacecraft engines—it

is a fundamental problem whose solution currently enjoys a high degree of interest.

In the first part of the thesis, an analytical, numerical, and experimental study

is performed in two-dimensions to assess the quasi-steady flow starting characteris-

tics in an external-compression ramp-type intake. Using the popular model based

on common understanding in the field and consistent with well-cited literature,

it is shown that the traditional model based on one-dimensional flow across a

planar shock is inaccurate. To remedy this, a novel analytical model is presented

to predict off-design self-starting behaviour using a curved shock wave. The an-

alytical results are supported by the numerical evidence from CFD simulations

as well as by the experimental evidence; taken together, these results constitute

overwhelming evidence supporting the arguments presented.

In the second part of the thesis, an analytical and numerical study is performed

in the unsteady, quasi-one-dimensional setting to assess the feasibility of predicting

shock dynamics inside an intake using a simple, approximate, yet representative

model. There is very little widely-available knowledge on impulsive flow starting in

the literature, and there is no existing theory for analytically predicting impulsive

xvii



flow starting phenomena discussed here.

The well-known Chester-Chisnell-Whitham formulation is extended using a

novel model (labelled lifting isentrope); it is effectively a provision for non-uniform,

unsteady flow upstream of the shock wave. It is found that a singularity exists

in the CCW model, which prevents its application to problems in impulsive flow

starting. There is little or no literature on this singularity.

To resolve these issues, a novel approximation (labelled CCW+) is derived,

guided by the time-accurate solution of the full governing equations, and an anal-

ogy between the surfaces formed of Riemann variables atop the space-time plane,

and an imaginary smooth fabric formed of three coloured threads. CCW+ is

shown to be regular and applicable to impulsive flow starting; it admits smooth

bi-directional motion of the shock wave—reversal of shock motion occurs naturally

if an intake fails to start.
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Résumé

Ce travail examine des processus de la mécanique des fluides impliquant le mou-

vement des ondes de choc a travers des châınes. En particulier, la prédiction et le

contrôle de mouvement du choc dans les entrées d’air ont une grande importance

pour le vol ultra-rapide et pour les moteurs des vaisseau spatiaux futurs–c’est un

problème fondamental dont la solution attire présentement un haut degré d’intért.

Mme si les processus de démarrage et non-démarrage dentrées dair sont considérés

bien compris au niveau conceptuel, d’importants détails restent à régler.

Dans la première partie de la thèse une étude analytique, numérique et expé-

rimentale est réalisée. L’étude est bidimensionnelle dans le but dévaluer les

caractéristiques de l’écoulement quasi-stationnaire dans une entrée dair de type

rampe avec compression externe. à l’aide dun modèle bien-connu basé sur la

compréhension commune dans le monde scientifique et selon la littérature de

spécialité on montre que le model traditionnel basé sur l’écoulement unidimen-

sionnel sur un plan de choc est inexact.

Pour corriger cette situation un nouveau modèle analytique est présenté pour

montrer le démarrage dentrées dair en utilisant une onde de choc courbe. Les

résultats analytiques sont bases sur des preuves numériques obtenus des simula-

tions CFD ainsi que par éléments expérimentales. Mises ensemble ces résultats

constituent des preuves écrasantes à l’appui les arguments présentés.

xix



Dans la deuxième partie de la thèse une étude analytique et numérique est

réalisée sur le sujet de l’écoulement instable, quasi-unidimensionnel. Le but est

dévaluer la faisabilité de la prédiction de la dynamique des chocs dans une entrées

dair en utilisant un modèle e simple, approximatif mais représentative.

Il ny a pas beaucoup des études et connaissances sur le démarrage impulsive

dentrées dair disponibles et il nexiste pas une théorie pour prédire analytiquement

les fennomanes de démarrage présentées dans cette étude.

La théorie bien-connue de Chester-Chisnell-Whitham est prolongé en utilisant

un nouveau modèle (étiqueté lifting isentrope) qui décrit en fait l’écoulement non-

uniforme non-stationnaire en haut de londe de choc. On trouve une singularité

dans le modèle CCW qui nous empche dutiliser ce modèle dans le démarrage

spontanée de l’écoulement. Il y a très peu dinformation, presque pas du tout, sur

cette singularité dans la littérature de spécialité.

Pour résoudre ce problème une nouvelle approximation (étiqueté CCW+) est

dérivé, base sur les solutions précises de les équations directrices, sur une analogie

entre les surfaces des variables Riemann sur le plan espace-temps, et un tissue

imaginaire fait de trios couleurs différentes. On montre que la théorie CCW+est

stable, régulière et peut tre appliqué dans le démarrage spontanée de l’écoulement.

La théorie CCW+couvre le mouvement uniforme bidirectionnel de londe de choc,

le renversement de la direction du choc arrive naturellement si une entrées dair

ne parvient pas à démarrer.

xx
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Chapter 1

Introduction

Mach number is like aborigine counting: one, two, three, four, many; once you

reach many, the flow is hypersonic.

H. K. Beckmann

1.1 A Quick Perspective on Hypersonics

The subject of hypersonic propulsion deals with engine/vehicle systems which are

capable of developing sufficient power to enable flight-speeds that are conveniently

measured in units of km/s. Concepts based on air-breathing engines have been

of varied interest to researchers since the 1950s3–7. An air-breathing engine is

a propulsive device that is specifically designed to make use of atmospheric air.

Instead of carrying oxygen on-board, as is done in a rocket engine, the air can be

captured and compressed using an air-intake. The intake performs this function

using “ram” compression, an effect which is derived from the speed of the vehicle

itself, rather than a mechanical device as used in turbojets8.

In practise, system designers have found the hypersonic environment to be

harsh and unforgiving3,9–11; nevertheless, there is much renewed interest in this

1
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Figure 1.1: Computer simulation of flow around a hypersonic cruise missile. The
vehicle forebody forms a large part of the external compression surface of the intake.
Taken from15.

field presently6, and the recent quests12,13 stem mostly from tactical advantages

gained under military applications (Figure 1.1). These mission areas might include

time-critical strike, access to space, and hypersonic global reach14.

Under commercial applications, the long term economical benefits afforded by

such a technology might include: payload delivery16 to low earth orbits (LEOs),

e.g., communication satellites and supplies for the international space station

(ISS); suborbital flight for commercial space tourism; and, hypersonic aircraft

for intercontinental transport17. Some of the technological challenges present in

hypersonic air-breathing propulsion are outlined in the following section.

1.1.1 Air Breathing Engines—Technological Challenges

An air breathing propulsion system (i.e., ramjet or scramjet) is typically designed

not only to generate enough thrust to overcome the aerodynamic drag on the

vehicle for cruise conditions, but also to have sufficient thrust leftover to overcome

the vehicle inertia so that it may gain speed and altitude as desired18,19. Hence,

there exist numerous design challenges and constraints related to the powered

high speed flight regime3,20–24.

Briefly, some of the aforementioned challenges include: the structural config-

uration, the thermal load management, the airframe-propulsion integration25–28,



1.1. A QUICK PERSPECTIVE ON HYPERSONICS 3

and the related scaling issues12,29,30; the addition of fuel to the high-speed air-

stream31,32 and the concomitant mixing and ignition issues33–36; the interaction

between the intake and the combustor and the related unstart issues. Indeed,

much of the existing research in hypersonics deals directly with the combustion

aspects of the scramjet concept22,33,37–58. The overall efficacy of an air-breathing

engine, however, depends greatly on the intake and its ability to capture and com-

press the incoming air for processing by the remainder of the engine 59–61. The

basic features and the terminology related to intake starting is explained in the

following section.

1.1.2 Intake Starting—Terminology

A major physical challenge in vehicle design is that a large mass of high-speed free-

stream air is to be captured and much of its kinetic energy is to be converted into

internal energy. This conversion of energy is to be carried out efficiently without

a great loss in stagnation pressure, and a highly compressed stream of air is to

be supplied to the combustion chamber. Hence, the intake is a large and critical

component and its design and its operational characteristics directly determine

the overall vehicle configuration and integration (Figures 1.1 and 1.2); this, in

turn directly relates to many of the aforementioned issues. Hence, it is important

to study and understand the fundamental physical processes which govern the

design and operation of the intake. In particular, the establishment of supersonic

flow inside the intake is an important first step—it is often referred to as: “flow

starting,” or “intake starting,” or “shock swallowing,” or “shock ingestion,” or

simply as “the starting process.”

In classical texts, the unstarted mode is often labelled as the sub-critical mode;

the started mode as supercritical; and the near-transition, metastable, middle
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Figure 1.2: Hypersonic cruise missile being tested in a wind tunnel. The vehicle
forebody forms a large part of the external compression surface of the intake. Taken
from15; a video of engine starting is also available on-line (ibid.).

stage is often labelled as the critical mode. The three modes are shown schemat-

ically in Figure 1.3. A physical description of these modes (started vs. unstarted

flow) follows next.

1.2 Started vs. Unstarted Flow

To facilitate discussion, here the intake geometry is conceptualized as a simple

converging duct with smooth walls, without any perforations or moving parts

(Figure 1.3). It is known as the Pitot intake; actual intakes may feature more

complex geometry (e.g., Figures 1.1, 1.2, and 1.4), but for the present discussion

the Pitot intake sufficiently illustrates the concept.

The earliest recognition of the starting problem traces back to war-time efforts

in the 1940s62,63. It is since long-established that for a given value of free-stream

Mach number (M∞ > 1) there are two distinct flow configurations possible in

a convergent geometry: started and unstarted (see Figures 1.3 and 1.4). A hy-
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(a)

Bow shock

Subsonic flow

Flow spillage

Flow spillage

A∞Ai

At

(b) A∞

At

AiSubsonic flow

(c) A∞

At

Supersonic flow Ai

Figure 1.3: Conceptual drawing of the three distinct modes of operation for a duct
placed in supersonic flow (Pitot intake): (a) Schematic for an unstarted flow field (sub-
critical mode). The flow is rapidly decelerated across the shock to subsonic speed. Some
of the flow is spilled outward. The rest of the flow enters the channel and is gradually
accelerated to sonic state at the throat (choked flow). (b) Shock on lip condition.
Kantrowitz-Donaldson transition-condition states that in this critical mode, all of the
decelerated subsonic flow across the shock can pass through the choked throat. (c)
Started, supercritical mode, throat may not be chocked (At/A∞ ≥ As/A∞), otherwise
the flow will revert to unstarted mode.
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(a) (b)

Figure 1.4: Experimental results illustrating (a) started and (b) unstarted flow con-
figuration. The bow wave and other flow features are made visible using the schlieren
imaging technique (light refraction occurs due to the presence of density gradients in
the flow). Courtesy of Prof. S. Mölder.

personic intake is said to be started when all of the incoming flow is captured

(M∞ >> 1,Mi >> 1,Mt ≥ 1); in this mode, large air mass is captured (Figures

1.3c and 1.4a), which is a desirable condition. Conversely, the intake is said to

be unstarted if much of the incoming flow is spilled; this spillage typically oc-

curs aft of a bow shock, as shown in Figures 1.3a and 1.4b, while the outflow is

choked (M∞ >> 1,Mi < 1,Mt = 1); in this mode, large air mass is spilled, and

the remaining amount carries significant losses with it which are associated with

passage across a bow shock. Thus, gaining a fundamental understanding of the

inlet starting process is highly desirable and it amounts to analysis of the shock

swallowing process.

1.2.1 Classical Operability Limits

The classical theory for predicting starting and unstarting behaviour of fully-

enclosed, converging ducts is established in62,64. This theory is based on a remark-
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ably simple yet representative shock on lip (SoL) condition with the assumption

of quasi one-dimensional, quasi-steady, homentropic flow downstream of the bow

shock (Figure 1.3). The critical or the SoL condition is attained as A∞ → Ai.

This theory is graphically presented in Figure 1.5, which shows three distinct

regions in the area-ratio, Mach number plane: area-ratios above the Kantrowitz-

Donaldson limit (curve labelled 1–3k–6k) span a region where flow is not choked,

the shock is swallowed, and inlet starting takes place; area-ratios lying below the

isentropic compression limit (curve labelled 1–3s–6s) span a region where flow is

choked, the shock is regurgitated, and unstarting takes place; the middle region

between these two curves permits stable started operation (once started, the flow

remains unchoked). That is to say: in this middle region, if the flow is unstarted

then shock swallowing does not occur and the flow remains unstarted, but if a

started inlet is somehow brought into this region (e.g., using variable geometry)

then it does not revert to unstarted configuration.

To satisfy compression requirements, inlets of practical interest lie close to

the isentrope (curve labelled 1–3s–6s). For example, consider a fixed-geometry

converging duct without mass spillage: referring to Figure 1.5, the smallest area-

ratio that can be started under quasi-steady conditions is an order of magnitude

larger than that which is desired for hypersonic cruise conditions (shaded region).

1.2.1.1 Terminology and Idiosyncrasies

Some parts of this work make reference to a so called index of startablity for

one-dimensional flow (IoS)65. The basic idea behind this is simple: to divide

the (area-ratio vs. Mach number) parameter space linearly between the classical

limit on self-starting (Kantrowitz-Donaldson) and the classical limit on operability

(isentrope). This division is made such that IoS = 1 corresponds to curve (1–3k–
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Figure 1.5: Area ratio required for diffusion to sonic speed from a given free stream
Mach number. Curve (1–3k–6k) is for the shock on lip (SoL) condition in a Pitot intake
where a shock is located exactly at the entrance plane (A∞ = Ai), followed by steady
homentropic flow inside the channel. Curve (1–3s–6s) is for no-shock case, i.e., with
homentropic flow everywhere; it establishes an ideal operational limit under steady flow
conditions in the absence of viscous and body-forces. Note that most practical intakes
fall in the region between these two curves, where the intake fails to start under steady
flow conditions. Also compare with Figure C.1 on Page 176. Plot is valid for (γ = 7/5).
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6k) and IoS = 0 corresponds to curve (1–3s–6s). This definition is reviewed in

greater detail in Appendix C, along with a plot showing curves for various constant

values of the IoS function on Page 176.

1.2.2 Problem Statement—Need for Further Analysis

While the process of intake starting and unstarting is considered well understood

at a conceptual level, significant details remain to be resolved60. The situation

is well-captured in this plain sentiment: Intake starting information is difficult to

obtain without an experimental test61. Indeed, some variation exists in the very

definition of what constitutes started flow; in practise, even the basic determi-

nation and classification of results (started vs. unstarted) may pose a challenge

in itself60,66,67. Hence, the phenomenological understanding seems to be lacking

insofar as applications/extensions of the existing theory to actual intakes appear

to be greatly limited in practise.

1.3 Review of Known Techniques

Various possibilities and methods exist to permit intake starting and to ensure

predictable and controlled flow59,63,65,68–77. An attempt is made to classify the

basic approaches below, however it is not surprising that most practical designs

incorporate and combine features from one or more of the basic techniques. These

basic approaches are reviewed in greater detail below.

The widely known methods for intake starting are all designed with the as-

sumption of quasi-steady flow conditions for both the free-stream flow, as well

as the flow inside the intake. These techniques include: variable geometry, over-

speeding, overboard spillage, and perforated diffusers. It is possible to design a
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vehicle employing one or more of these techniques simultaneously.

Alternate approaches—and, these are less widely discussed—make use of un-

steady flow features to overcome the classical quasi-steady operability limits on

flow starting outlined in §1.2.1. Here, one may imagine suddenly jumping into

the middle region of Figure 1.5. The transition from a steady unstarted configu-

ration to a steady started configuration is thus achieved, albeit without meeting

the geometric constraints stemming from the Kantrowitz-Donaldson limit.

1.3.1 Steady Flows

1.3.1.1 Overspeeding

Perhaps the most well known method is the so called overspeeding technique68.

Referring to Figure 1.5, a vehicle (featuring an intake of a particular area-ratio) is

accelerated until the free-stream Mach number is increased past the Kantrowitz-

Donaldson limit which corresponds to the particular area-ratio (i.e., until curve

labelled 1–3k–6k is crossed). Once the flow is started, the vehicle can be safely

decelerated and brought back into the middle region, where it can operate most

efficiently, close to (but above) the isentrope. This approach does not work for

hypersonic inlets (featuring small area ratios, designed to operate at high Mach

numbers), because the Kantrowitz-Donaldson function exhibits a plateau at those

speeds (curve labelled 1–3k–6k cannot be crossed in this fashion for small area

ratios). But for relatively low Mach number applications (e.g., M∞ ∼ 1.6), this

general approach is both simple and practical.
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Figure 1.6: SR-71B Blackbird with translating centerbody in the intake. Taken on
December 1994 from an in-flight refuelling tanker. SR-71B was the trainer version of
the SR-71. Notice the dual cockpit to allow the instructor to fly the airplane. NASA
Photo EC94-42883-4.

1.3.1.2 Variable Geometry

Another method used to start an intake involves temporarily changing its geom-

etry69–71 such that it satisfies the aforementioned limits. The small area ratio

intake is transformed into one with a larger area ratio (i.e., until curve labelled

1–3k–6k is crossed). The change can be effectuated by opening up the exit or by

closing down the entrance.

Seminal work on variable geometry intakes includes various experimental stud-

ies performed in the late 1950’s. Use of translating centerbodies and cone inlets,

similar to the SR-71 Black Bird (Figure 1.6) and the Russian MiG-21 fighters

(Figure 1.7) is examined in78,79; performance of truly variable geometry inlets is

reported in75,80.

For simple intake geometries, variable area ratio may be easy to implement.

However, the weight penalty and mechanical complexity of a variable geometry
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Figure 1.7: Translating nose cone intake of the Russian MiG-21 (in use from the mid
1950’s). At low speeds (M∞ < 1.5) it is fully retracted; between speeds of (1.5 < M∞ <
1.9) it is in the middle position; and at higher speeds (M∞ > 1.9) it is in the maximum
forward position. Source: Wikimedia Commons.

system can also make this option unattractive. This especially holds true for

expendable vehicles, such as the light-weight missiles12. The variable geometry

can also incorporate external compression surfaces which will be discussed further

in §1.3.1.4; in this manner, multiple design points∗ can be incorporated, or at

worst, the combined approach can be used to improve the off-design performance

(Figure 1.7).

1.3.1.3 Perforated Diffusers

Another approach is to allow for mass spillage through holes/slots/porosity in the

walls of the intake. This approach effectively increases the total exit flow area

to that which is required by the Kantrowitz-Donaldson function for self starting.

Once the intake is started, the perforations may be closed and the intake should

remain started (provided that exit flow does not choke during the closing process).

∗For definition, see the List of Terms.
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Early experimental studies on perforated diffuser form several classical re-

ports63,72–74 on the subject of intake starting. More recent developments incor-

porating improved theoretical/analytical models, as well as numerical and com-

putational fluid dynamics (CFD) verifications of the analytical results are re-

ported in65,81,82. These advancements82 promise considerable improvement in

design (hole sizing and location) over the classical results. At low Mach num-

bers (M∞ ∼ 2), the aforementioned classical experiments63,72 successfully demon-

strated very high efficiency perforated diffusers. Recent experimental tests per-

formed using a semi-stream-traced and shape-blended, perforated diffuser are re-

ported in76. In practise, due to the complexity of the flow geometry and lack of

available data, the sizing, number, and location of perforations required to start

the intake are determined empirically, ibid.

While closing of perforation was not performed in any of the studies cited

above, it is believed that for a hypersonic vehicle, once the flow is started, closing

of the perforations is a must. For a hypersonic cruise vehicle, if the perforations

are sized according to quasi-steady flow conditions, perhaps as much as 95% of

mass may need to be spilled-through during the starting process81. In the started

mode however, the increased value of streamwise momentum of the core flow leads

to a dramatic reduction in spillage; this is the so called smart-hole effect.

As with variable geometry, regulatory mechanisms (e.g., flaps, doors, valves,

etc.) for closing of the perforations lead to further structural and airframe-

propulsion integration challenges. The additional mechanical complexity of the en-

gine and the concomitant weight penalty is a disadvantage, especially for expend-

able vehicles12. However, these constraints may be alleviated and the approach

made more effective by combining it with one or more of the other techniques

(particularly overboard spillage). This is effectively the mechanism employed in76
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Figure 1.8: The famous “REST” inlet with spillage holes, taken from76. The basic
design falls under the stream traced wave-rider concept, but it is shown here as an
example combining the use of perforations to assist flow starting.

for lowering the Mach number at which the intake self starts (Fig: 1.8).

1.3.1.4 Mixed Internal/External Compression Geometry—The Wave-

rider Intakes

A commonly employed approach is that of combining internal contraction with

an external compression geometry in a single unified design. This design practice

is almost universally employed in modern vehicle concepts. It reflects the fact

that starting is made easier by incorporating a built-in spillage mechanism into

the design. It also reduces the effective contraction in the unstarted mode as the

flow is not physically bounded on all sides (Figure 1.9).

In the started mode, the external surface is used to precompress the flow

before it enters the fully enclosed “internal contraction” section. In the unstarted

mode, the external unbound geometry permits “overboard spillage” to take place

upstream of the internal contraction.

Once the flow is started, the supersonic nature of the flow dictates that small
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Figure 1.9: The famous “REST” inlet, taken from16. The basic design methodology
gives a stream traced intake suitable for a wave-rider; it is shown here to emphasize
large provision for subsonic spillage to assist flow starting.

disturbances generated at the intake do not perturb the upstream/incoming flow.

Hence, from the engine-design viewpoint, the same stream/mass capture is main-

tained as in the case of a fully enclosed (bounded flow) geometry.

The external compression surface can be either fixed or variable in geome-

try. This surface is usually formed by the underside (aerodynamically shaped

belly) of the vehicle, giving the “wave-rider” family of hypersonic vehicles83 their

characteristic look (Figures 1.1 and 1.2). Numerous designs exist depending on

the vehicle application. For the two-dimensional case, the common ramp-type

geometries include the two-shock (Appendix A) and the Prandtl-Meyer intakes

(Appendix B). The axisymmetric analogues of the two planar cases include the

conical forebody84,85 and the Oswatitsch spike intake86,87. Figures 1.6 and 1.7

show classical designs based on these concepts.

For the three-dimensional case, stream-traced∗ geometries are also used67. Pos-

sible disadvantages or at least some uncertainties about these include the effect

of yaw and angle of attack on flow stability.

∗The resulting geometry is carved out, usually based on a cardinal streamline, from a fully
enclosed, symmetric, known internal flow (Figure 1.10).
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Figure 1.10: An example of a doubly curved stream traced inlet based on Busemann
flow. Flow would be from left to right; inside surface is partially visible and is rendered
in green. Note the large provision for flow spillage in the unstarted mode. (Own work.)

From the flow starting viewpoint, the behaviour of aforementioned intakes (both

in two- and three-dimensional geometries) is quite different from the quasi-one-

dimensional model (Figure 1.5). In general, their starting characteristics are noto-

riously difficult to estimate60,61 and can only be ascertained through experiments76.

1.3.2 Essentially Unsteady Flows

In addition to the works based on classical quasi-steady limits, there is also some

data available for unsteady flow starting. Conclusive experimental evidence10

exists indicating that flow starting can occur spontaneously in very low area ratio

intakes, e.g., when tested in gun-tunnel experiments88; hence, a separate set of

limits on unsteady flow starting may exist77.

While advancements in accurate numerical solution of the unsteady form of

governing equations (unsteady Euler equations) has lead to a greater understand-

ing of the transient evolution of complex wave structure during the starting pro-

cess, there is little or no theoretical treatment available describing the essentially

unsteady starting phenomena.

Computer simulations77 where some level of controlled unsteadiness is pre-

scribed show that a separate set of limits may exist for inlet starting under un-
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steady flow regimes. The physical nature of these limits is not precisely understood

owing to the lack of available analysis; a distinct paucity of theoretical or experi-

mental studies exists, especially in comparison with the various approaches based

on quasi-steady flow, as mentioned above.

1.3.2.1 Highly Accelerative Motion

For example, one situation may be that of a vehicle/intake undergoing relatively

high acceleration (non-negligible volumetric force term in the governing equa-

tions). Computer simulations and scale analysis77 have shown that the critical

acceleration required to start an inlet can be rather large (from 1,000 g’s to 10,000

g’s depending on the intake area ratio). However, fundamental knowledge about

the unsteady shock motion during the critical stages of acceleration is not known.

1.3.2.2 Membrane Rupture

Another plausible situation may be that which results from the rupture of a

thin/frangible membrane, mounted at the entrance plane of the inlet. The rup-

ture process must occur rapidly enough to cause sufficiently high localized spatial

gradients, which subsequently lead to significant unsteadiness in the general flow.

The unsteady flow is not subject to the steady-state starting limitations, and may

be useful for intake starting. Various samples of such unsteady behaviour in inlets

are demonstrated in77.

1.3.2.3 Gun Tunnel Tests

On the experimental side, impulsive flow starting has been widely observed and

reported10; this is particularly true of shock tube and gun tunnel tests. While

these tests constitute an economical and effective method of investigation, it only
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allows for short duration testing∗ of geometries to determine their performance

characteristics (typically in the started mode). Hence, these studies do not directly

provide a separate starting technique to be used in flight as such.

1.3.2.4 Ram Accelerator Tests

Tests conducted in an evacuated tube (barrel), inside which, a projectile (scale

model of intake/vehicle body) is rapidly accelerated to high velocities must also

contain started flows. In this concept, the high speed projectile then pierces a

diaphragm and enters a section of the barrel containing premixed combustible

gas. The flow configuration surrounding the projectile is setup to give rise to a

stable (attached) detonation wave at the projectile shoulder, thus enabling further

acceleration of an otherwise unpowered projectile. Applications of this concept

include high velocity projectiles, including ballistic launch and insertion of small

payloads into LEO.

1.4 Roadmap

The remainder disquisition is organized in two separate parts: the first part deals

with the quasi-steady flow starting process in mixed-compression ramp intakes;

the second part deals with with a fundamental theoretical issue in the shock

dynamics which occur during the impulsive starting/unstarting processes. The

rationale and the original contributions made in the respective parts are outlined

below.

∗Typical run times are measured in tens of milliseconds.
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1.4.1 Off-design Starting in Mixed Compression Intakes

1.4.1.1 Rationale

For relatively simple geometries, the on-design∗ starting characteristics can be

obtained as a straight-forward† extension of the Kantrowitz-Donaldson theory.

However, even for these relatively simple flow geometries, the off-design starting

characteristics are not known; the very same difficulty arises in the operability

analysis of mixed compression intakes used in wave-riders, including the stream-

traced intakes which arguably hold the most promise for steady-flow applications.

Hence, it seems appropriate to further examine the off-design starting condition

for the ramp intakes.

1.4.1.2 Contributions

A novel analytical model is proposed in the first part of the thesis to predict

off-design self-starting behaviour; its application is demonstrated for a particu-

lar two-shock ramp intake. The calculations are compared with the CFD result

which lend credence to the assumptions made in the analysis. Finally, signif-

icant circumstantial evidence is obtained experimentally, further supporting the

conclusions reached analytically.

1.4.2 Singularity in Shock Dynamics

1.4.2.1 Rationale

As already mentioned, the precise nature and the physical mechanism(s) involved

in establishing the limits on unsteady flow starting are not known. However, at

∗See design point in the list of terms.
†These results are included in Appendix A and Appendix B for completeness.
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an intuitive and conceptual∗ level, the final outcome of the “unsteady processes”

or “involved phenomena” must lead either to a started†, or an unstarted flow‡.

The in-between unsteady states are thus related by the dynamic motion, inside

the duct, of that transient bow shock. The above description of unsteady shock

motion naturally suggests a direct application or an extension of the classical

shock dynamics theory89–91 to intake starting; such an attempt is made in the

present work. However, it turns out that the shock motion, as predicted by the

Chester, Chisnell, and Whitham (CCW) approximation, manifests a mathemati-

cally singular behaviour. The physical relevance of this singularity is not known

or properly understood in the present context.

1.4.2.2 Contributions

The above issues surrounding the singularity are discussed, and a novel formula-

tion addressing them is presented in the second part of this work. Application

of the resulting ideas is demonstrated for a particular geometry, undergoing ac-

celerative motion, as an example. The resulting formulation is also shown to be

applicable to other more classical problems of shock dynamics.

∗Used in the sense of unsteady, quasi-one-dimensional flow.
†If bow shock is swallowed, steady state leads to Figure 1.3c.
‡If bow shock is regurgitated, steady-state leads to Figure 1.3a
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Chapter 2

Off-design Mixed Compression

Ramp Intakes

What most experimenters take for granted before they begin their experiments is

infinitely more interesting than any results to which their experiments lead.

Norbert Wiener

2.1 Introduction

This chapter follows the rationale from §1.4.1.1. As reviewed earlier in §1.3.1.4,

the two- and three-dimensional mixed-compression intakes are said to behave quite

differently from the quasi-one-dimensional model of Figure 1.5. As such, the ana-

lytical operability limits do not correspond well with the experimental results. For

the two-dimensional case, the common mixed-compression ramp intakes include

the two-shock intakes. These intakes are based on a well-defined geometry and a

rational design point for analysis of flow starting.

An analytical, numerical, and experimental study was thus performed to model

flow starting inside a ramp intake. The experimental tests were conducted in the

23
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Valcartier trisonic wind-tunnel facility of DRDC92, at three different free-stream

Mach numbers, M3, M3.5, and M4, using the nozzle blocks for the highest available

Mach numbers. The intake geometry was designed based on a two-shock concept,

with the assumption of perfect cancellation of the internal shocks at a design free-

stream Mach number of three (MD = 3). The intake area ratio was designed such

that it straddled the expected self-starting curve near M3.5. To explain these

subtle points further, and to facilitate discussion, the conceptual mechanism for

flow starting in a typical ramp intake is examined next.

2.2 Conceptual Mechanism for Starting

Consider the geometry of a mixed-compression intake, such as the one shown in

Figure 2.1, which features overboard spillage in the unstarted mode. As the free-

stream Mach number is increased, the bow shock approaches the leading edge of

the intake (Figure 2.1a). As the Mach number is increased further, the shock

wave becomes attached at the leading edge in the aft portion (Figure 2.1b). The

outboard flow also adjusts to the changing conditions around the main body as

the mass flow through the throat remains choked. The capture area (A∞) also

increases gradually with the increasing free-stream Mach number. The changing

flow configuration accommodates subsonic spillage mechanism in the cowl region.

While the intake remains unstarted, this spillage mechanism enables the remaining

flow, which cannot be ingested through the choked exit, to spill around the cowl

(Figure 2.1c).

In a sense, the overboard spillage mechanism resembles the behaviour of a

variable size perforation located near the entrance of the inlet. While the flow

is unstarted, a bow shock is situated upstream of the inlet cowl, and subsonic



2.2. CONCEPTUAL MECHANISM FOR STARTING 25

(a) A∞
M∞

At

δ1

Bow shock

(b)
A∞

M∞

At

θ1

δ1

(c) A∞

M∞

At

θ1

(x4
, y4

)

(x3, y3)

δ1

A∞,2

M∞,2

Figure 2.1: Schematic drawing of flow spillage in a mixed-compression ramp intake
during the starting process.

spillage takes place downstream of that shock. In the scenario, where the bow

shock is located at the cowl plane (or is swallowed), no overboard spillage occurs

upstream of the cowl leading edge (A∞,2=Ai in the sense of Figure 1.3b on Page 5).

Indeed, during the starting process, as the shock approaches the cowl, the entire

wave complex around the cowl lip acts as a smart hole (Figure 2.1a–c).
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2.2.1 Traditional Approach

Based on the above description, it seems natural to extend the classical one-

dimensional Kantrowitz-Donaldson model to account for the overboard spillage.

Hence, the multidimensional starting problem is treated in the literature, almost

universally, by assuming a quasi-one-dimensional flow downstream of the cowl lip

and a simple “internal contraction” is compared with the classical Kantrowitz limit

computed using a “mass-averaged” Mach number upstream of the cowl shock10,76.

Experimental and numerical studies in the literature widely report using this

estimation technique61,76,93–99, but the degree of success with which one can predict

starting, is reported to vary from model to model and from wind-tunnel to wind-

tunnel60,61,76.

2.2.2 On-design Startability (2S-Intakes)

For clarity of presentation, formulae used for determining the on-design self-

startability of a two-shock inlet are included separately in Appendix A. Here,

it suffices to include the useful results in graphical form (Figure 2.2). It is inter-

esting to note that under the definition of the IoS function, the startability of a

two-shock inlet for the weak reflected shock (WRS) design is well approximated by

IoS ' 0.6, while the startability of the strong reflected shock (SRS) design is well

described by IoS ' 0.35. The IoS ' 0.25 curve provides a good approximation for

the supersonic operational limit of an on-design two-shock inlet. These approxi-

mations especially hold well at low to moderately high values of free-stream Mach

numbers (1 < M∞ < 4).
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Figure 2.2: Self-starting ability of two-shock inlets compared with classical operability
limits. Self-starting of an on-design two-shock inlet with weak reflected shock (WRS)
design-point is well approximated by the IoS ' 0.6 curve. The self-starting curve for the
strong reflected shock (SRS) design indicates dramatic improvement over the (WRS)
design. Operability limit of a two-shock inlet with sonic-design (Mt = 1) is also plotted.
The M3IoS0.5 design point is shown at M3, M3.5, and M4 in relation to the (WRS)
self-starting curve. Plot is valid for γ = 7/5.

2.3 Selection Basis for Experimental Tests

With the above considerations, it now seems possible to determine the area ratio

suitable for experimental testing in the DRDC tunnel. The experimental setup

was designed as part of a broader research program100, with the aim to establish

experimental capability for testing membrane rupture (§1.3.2.2). Also, as indi-

cated in §2.1, the available nozzle blocks allow testing at M3, M3.5, and M4.

Hence, based on these considerations, we note that the M3IoS0.5 (Figure 2.2) de-

sign point is suitable. It is not self-starting at the M3 test condition, as this point

lies below the self-starting curve approximated by IoS ' 0.6. Indeed, this approxi-
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mation (interpretation of the self-starting curve) suggests that, under quasi-steady

flow conditions, the M3IoS0.5 point is self-starting at M∞ ' 3.62. One may then

generate a hypothesis based on this approximation, that the intake would be self-

starting only at the M4 and not at the M3 or M3.5 test conditions; we will return

to this hypothesis later on.

2.3.1 Actual IoS of On-design Ramp Intakes

While the relative merits of overboard spillage in aiding flow starting are evident

from the above stated IoS values, it is more convenient to redefine (C.1) specifically

for the two-shock inlet geometry. Hence a new function (IoSact) is proposed, and

it is constructed using the starting model as described in Appendix A, so that on-

design self-starting would occur precisely at IoSact = 1. Referring to the geometry

of Figure A.1b,

IoSact = f(γ,M∞, At/A∞,2)

= max

(
0,min

(
1,
At/A∞,2 − As/A∞,2
A
K
/A∞,2 − As/A∞,2

))
. (2.1)

Figure 2.3 shows a plot of (2.1) for a range of free-stream Mach numbers. Un-

der this new definition, the IoS value lies in the range [0:1], where a value of unity

signifies self-starting characteristics. As can be seen, for a given free-stream Mach

number, with the SRS design, a lower area ratio is permissible while maintaining

self-starting characteristics. For example, the WRS design (Figure 2.3a) permits

an intake with At/A∞ ' 0.36 to self-start at M∞ = 10, whereas the SRS design

(Figure 2.3b) allows the same area ratio to be started at M∞ ' 3.

As expected, the iso-contours for IoSact = 1, as rendered in the area-Mach

number plane of Figure 2.3, agree with the self-starting curves shown in Figure 2.2,
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(a)

(b)

Figure 2.3: Self-starting ability of two-shock inlets: Weak reflected shock (a); Strong
reflected shock (b). Isolines for the IoS values are rendered in the (M∞, At/A∞)-plane, at
IoS = {1, 0.9, ..., 0.5}. These figures are mainly intended to demonstrate the highly non-
linear and non-monotone nature of the starting boundaries, as evident by the “kink” in
surface (a), and the “steepness” in (b); in other words, the rendered iso-contours are non-
monotonic for IoSact ' 0.7 and values below that, as shown in (a); similarly, the compact
nature of the contours in the (M∞, At/A∞)-plane, as shown in (b), indicates that the
start-no-start boundary is very sharp for the SRS configuration space. These effects are
most-easily captured in the shown surface plots, and offer better understanding of the
starting characteristics than the curves shown in Figure 2.2; indeed, the design point
of the wind-tunnel model lies near the IoSact ' 0.9 curve, as denoted by the “x” in the
top figure.
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for both the WRS and the SRS design concepts. The design point of the example

geometry used here, and also selected for wind tunnel tests, lies on the IoSact ' 0.9

curve, as denoted by the “x” in Figure 2.3a.

2.3.2 Relation to Stream Traced Geometries

In comparing Figures 2.3 and 1.5, it is evident that the new curves (particularly,

the IoSact = 1 curves for self-starting) lie below the original Kantrowitz-Donaldson

function (IoS = 1). The distance between these curves points out the degree

to which the overboard spillage aids flow starting when compared with a fully

enclosed duct. Indeed, a fully enclosed planar intake can be constructed based on

this geometry (using symmetry about the upper wall), and in the present idealized

context, its starting characteristics would then match the original Kantrowitz-

Donaldson curve. While the performance of the two intakes would be identical

once the flow is started, their behaviour in the unstarted flow would be dramatically

different.

The improved starting characteristics shown in Figure 2.3 suggest that other

geometries likely benefit to a similar degree. It might also be advantageous to

construct stream traced geometries which provide maximal external spillage in

the unstarted mode, without sacrificing performance in the started mode.

While the potential advantages of overboard spillage are clear from this analy-

sis, some important factors need further consideration. Such factors likely include

flow instability and sensitivity to yaw and angle of attack, etc. The sensitivity

point seems particularly relevant when considering the non-linear compact nature

of the curves in Figure 2.3b. These complexities have not further been considered

here.

At hypersonic speeds, the self-starting characteristics exhibit strong Mach
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number independence; in this sense, the two-shock geometries carry limited po-

tential and relatively small contraction ratios (∼ 6) are possible at best. Stream

traced geometries with weaker forebody shocks or more efficient (isentropic) com-

pression processes combined with SRS may posses significantly better self-starting

characteristics (e.g., Appendix B).

2.4 Self-starting at Off-design Condition

In the discussions so far, the flow behaviour has only been illustrated near the

on-design self-starting conditions. However, recall from section 2.3 that for a

2S-WRS, the (M3IoS0.5) design point is not self-starting. Naturally then, the

question arises: at what value of off-design Mach number would the above inlet

self-start? And, more generally, is it possible to obtain a reasonably accurate model

for predicting self-starting at off-design conditions?

2.4.1 Analytical Model

An attempt will now be made to answer the above questions, and to seek an

approximate analytical model describing the starting behaviour of the (M3IoS0.5)

design point. In particular, judging from Figure 2.2 and Figure 2.3a, the self-

starting design point for M∞ ' 3.62 gives an area ratio close to the area-ratio for

the present (M3IoS0.5) design. However, as hinted earlier, the hypothesis that

the model should not start at M3.5 requires further testing; i.e., from that figure

alone, it is not sufficiently clear as to how the actual flow would behave because

that particular starting curve is valid only for M∞ = MD, an assumption which

no longer holds in the present case.

Following the traditional approach (§2.2.1), the critical conditions at which the
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Figure 2.4: First analytical model for self-starting at off-design Mach number with a
straight-segment shock (NS); (M3IoS0.5) design, operating at M∞ = 3.55. LS–leading-
edge shock; MS–Mach stem; and, NS–normal shock.

(M3IoS0.5) model should self-start may be estimated using the “simple” model of

Figure 2.4. This condition may also be stated mathematically, as follows:

0 = −At + (y2 − y3)
A
K

A∞
(γ,M∞) +

∫
NS

dAs (2.2)

Here, the first term accounts for the throat area, the second term accounts for

the Kantrowitz area contribution at the short Mach stem (modelled as a straight

normal shock), and the last term represents integration over the NS shock segment

for the sonic area downstream of the segment; effectively, it is the Kantrowitz

area for this shock wave. To obtain the critical value of Mach number for a given

geometry, (2.2) can be solved for M∞.

A value of M∞ = 3.55 was thus obtained for Mach number at which the

(M3IoS0.5) intake should self-start according to this simple model. This prediction

further enforces the hypothesis∗ that the (M3IoS0.5) intake should show started

flow at the M4 test condition only.

To better judge the validity of this last assertion, a set of high resolution

numerical simulations was carried out next.

∗Recall the interpretation of the self-startability curve from §2.3, and the discussions sur-
rounding Figure 2.2 and Figure 2.3a.
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2.4.2 Simulation Model

An existing CFD package101 was used to carry out a series of simulations to

determine the critical Mach number for self-starting. These simulations were ex-

clusively carried out using the inviscid, perfect gas model. The simplification

in modelling of the physics was justified in the present context for several rea-

sons. In particular, the main aim here was to improve the present conceptual and

analytical level of modelling which is also based on the perfect gas assumption.

Hence, the first step should be improvement of the analytical/conceptual model

within the inviscid framework—until it is truly representative of the underlying

multidimensional flow phenomena inherently present in the ramp intakes.

These computations were carried out using five levels of refinement. It means

that tiny mesh-cells (32x smaller compared to the background mesh) were auto-

matically inserted in areas containing shock waves and slip layers; this well-known

technique enables better resolution and capturing of the locally high spatial gradi-

ents102. Based on previous experience with similar flows, depending on the back-

ground mesh size,∗ typically three to five levels of refinement provide adequate to

high levels of engineering accuracy, respectively. This was confirmed through a

grid convergence study for the critical-condition result (at three significant figures

in the value of critical Mach number for starting).

The free-stream Mach number was gently increased until the incipient start-

ing point was reached. Steady-state solution was occasionally established in the

process, to rule out unsteady flow effects. One such solution, near the incipient

starting condition, is shown in Figure 2.5.

The critical value of Mach number for self-starting of this model was thus

∗Background mesh size typically depends on local geometric features; in this way, specifying
a global grid step size of 1–3% of the characteristic length scale (h ' 0.01Lchar), with a cell-to-cell
volume-ratio of 1.6 may be considered to yield sufficiently accurate results.
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Figure 2.5: Incipient starting condition (nearly started flow) for the (M3IoS0.5) design;
self-starting condition at M∞ = 3.35 is shown.

determined to be M∞ = 3.35 (compared to a value of 3.62 from Figure 2.2, and

a value of 3.55 from the simple analytical model of §2.4.1). Comparison between

Figures 2.5 and 2.4 shows that the curved shock waves are a key feature present

in this flow. The multidimensional difference between the two models was deemed

to be the main source of the disparity in self-starting prediction.

2.4.3 Analytical Model—Revisited

In the above context, with ideal conditions used in both models, the analytical

prediction (3.55) is deemed to be significantly higher than the CFD result (3.35).

To remedy this discrepancy, we can try to eliminate some of the assumptions made

in the simple model. Firstly, this model assumes two straight segmented shocks:

one for the Mach stem (MS) and the other for the “normal” reflected shock (NS).

Physical flow only requires that the Mach stem be perpendicular at the upper

wall, while the reflected “normal” shock be perpendicular at the ramp. The flow

downstream of this assumed wave structure was treated as subsonic (true, as both

shocks were normal to the flow at all points). Physical flow does not necessarily

abide by this requirement. Furthermore, a more realistic physical requirement is

that the pressures match (on either side of the slip layer) downstream of the triple
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Figure 2.6: Second analytical model for self-starting at off-design Mach number with
curved reflected shock; (M3IoS0.5) design, operating at M∞ = 3.378. LS–leading-edge
shock; MS–Mach stem; and, CS–curved shock.

point. Indeed, this condition was relaxed in the above analysis.

The key differences may then be attributed to the fact that the actual Mach

stem and the actual reflected shock form curved structures, and that the total

pressure (and concomitantly, the mass flux) across these curved shock segments

may be higher than that which is required in the simple analytical model (with

the two straight-segment shocks).

To improve the aforementioned prediction, an analytical model for the curved

reflected shock was first obtained, as shown in Figure 2.6. The new model was

obtained by applying the classical three shock theory of von Neumann at the

triple point (t0), i.e., in the near vicinity of the triple point, both the pressure and

the flow inclination across the Mach stem, were required to match the respective

values across the two oblique shocks103. Furthermore, a zero curvature constraint

was imposed at the triple point for the curved shock (CS), and, this shock was

required to be normal at the ramp (t1).

For ease of integration along the curved shock, the (x, y)-coordinates for the

curved shock were obtained in parametric form (x(t), y(t)), with the free parameter

(t ∈ [0, 1]) attaining a value of zero at the triple point, and a value of unity at the

ramp, as shown in Figure 2.6.

At the triple point, the flow deflection δ(t0) was obtained by solving the fol-
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lowing algebraic form, which effectively requires the difference in pressures, on

either side of the slip stream, to be zero:

0 = p∞ ξ (γ,M∞, θ (γ,M∞, δ(t0), 0))

− p∞,2 ξ (γ,M∞,2, θ (γ,M∞,2, δ(t0) + δ1, 4π)) . (2.3)

Here, the composite function, ξ, gives the local pressure ratio across a shock

wave104:

ξ = ξ
(
γ,M(u), θ

)
=

2γβ − (γ − 1)

γ + 1
, (2.4)

with β as defined in (A.10), and θ as given by (A.12).

Hence, for a given value of free-stream Mach number, (2.3) can be readily

solved for the initial flow deflection, δ(t0), near the triple point. The curved re-

flected shock can then be obtained as a cubic form (y(t) = Σici(x(t))i), by solving

its constraint system, 0 = f2(ci, x4), for the four coefficients, (ci, i = 0 . . . 3), and

the x-coordinate (x4 = x(1)), where it impinges on the ramp:

f2 =



c0 + c1x3 + c2x
2
3 + c3x

3
3 − y3

c0 + c1x4 + c2x
2
4 + c3x

3
4 − x4 tan δ1

c1 + 2c2x3 + 3c3x
2
3 − tan(θ(0))

c1 + 2c2x4 + 3c3x
2
4 + cotan(δ1)

c2 + 3c3x3


(2.5)

Here, the point (x3, y3) = (x(0), y(0)) is found from the intersection of the straight

Mach stem (an assumption) with the incident, leading-edge shock. However, as
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with the slip layer deflection, the angle of this leading-edge shock, θ1 is a function

of M∞, which is not known a priori (we are in fact searching for the value of M∞

at which the inlet will self-start). In practice, this is easily remedied with a few

iterations over the free-stream Mach number; the overall procedure is thus started

with an initial guess value of M∞=MD in the following equation,

0 = −At + (y2 − y3)
A
K

A∞
(γ,M∞) +

∫
CS

dAs (2.6)

This condition follows directly from quasi steady flow assumption; it simply states

that the the net sum of mass fluxes across the control surfaces is zero. The first

term denotes the throat area, the second term accounts for the Kantrowitz area

contribution at the short Mach stem (modelled as a straight normal shock), and

the last term represents integration over the curved shock segment. The general

expression for this integral is given below. It is suitable for curved shocks occurring

in ramp intakes.

The CS integral was split into two separate parts, one for the supersonic

branch, t ∈ [0, ts], and the other for the subsonic branch, t ∈ (ts, 1] :

∫
CS

dAs =

∫ ts

0

ds

dt
sin(−α)

A
K

A(d)

(
γ,M(d)

)
dt

+

∫ 1

ts

ds

dt

A
K

A(n)

(
γ,M(n)

)
dt (2.7)

Here, ds/dt as plotted in Figure 2.7, is the rate at which the local shock area (arc

length) changes with respect to the integration parameter, t:

d

dt
s(t) =

√(
d

dt
x(t)

)2

+

(
d

dt
y(t)

)2

(2.8)
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Figure 2.7: M(t)—local Mach number downstream of the shock. ds/dt—rate at which
the local shock area (arc length) changes with respect to the integration parameter, t.

The angle, α (plotted in Figure 2.8), describes the local inclination, relative to

the shock, of the infinitesimal stream-tube for which the Kantrowitz area is being

integrated:

α(t) ≡ θ(t)− δ1 − δ(t)) (2.9)

Here, θ(t) (plotted in Figure 2.8) is obtained in parametric form using the following

identity:

θ(t) ≡ arctan

(
dy/dt

dx/dt

)
, (2.10)

The aerodynamic shock angle is represented in (2.9) by the sub-expression (θ(t)−

δ1), and δ(t) is the local change in flow inclination across the curved shock.

For the subsonic branch, the normal component of the Mach number upstream

of the curved reflected shock is given by M(n) = M∞,2 sin(δ1 − θ(t)), with M∞,2

obtained using (A.9). The Mach number downstream of the curved reflected shock

M(d) (plotted in Figure 2.7) is also given by (A.9).

Here, as a check, the value of M(d)(t) for t = 0 must correspond to the triple

point solution. Similarly, M(d)(1) must correspond to the value behind the normal
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Figure 2.8: α(t)—local inclination (degrees) of the infinitesimal stream-tube for which
the Kantrowitz area is being integrated, as measured relative to the shock; θ(t)—angle
of the curved reflected shock, as measured relative to the x-axis. Note, this angle differs
from the aerodynamic shock angle obtained from (A.12), by an amount delta1. δ(t)—
local change in flow inclination across the shock.

shock wave impinging at the ramp. Also note that, in general the Mach number

distribution along the cowl shock wave may be highly non-uniform, even with

uniform flow upstream of it. Hence, use of a single averaged value with a straight

segment shock may not properly capture the physical essence of multidimensional

effects, and it may also explain the discrepancies reported in literature.

To obtain the critical value of Mach number, (2.6) is solved for M∞, by itera-

tion; a value of 3.378 was thus obtained for Mach number at which the (M3IoS0.5)

inlet should self-start according to this revised analytical model. This prediction

was deemed to be a significant improvement over the earlier model, as it compared

well with the ideal flow CFD result (3.35).

Note that the actual shock profile, as obtained from the above model, is drawn

in Figure 2.6; the result compares well against the solution obtained from the CFD

simulation as shown in Figure 2.5.

Based on these comparisons, the curved shock model with the stated assump-
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tions was deemed to be valid within the present scope. We note that it was also

possible to apply a more sophisticated approach which modelled the curvature of

the Mach stem; however, given the small size of the stem (which depends on M∞-

MD difference), and the level of accuracy already attained with the above simpler

model, the additional complexity and concomitant effort was deemed unnecessary.

Lastly, a higher order model may be required if the starting Mach number value,

M∞, deviates greatly from the design value, MD. In this connection, it may be

necessary to obtain two separate shock profiles for the supersonic and subsonic

parts; the rest of the analysis and the integration procedure should still hold.

2.4.4 Simulation Model for the Tunnel Start-up

The analysis presented above relied on a rather simplified situation, namely, that

the initial flow development follows a quasi-steady process, such as would result

from a gradual unblocking of an initially blocked exit. However, the actual flow

in a wind-tunnel involves starting of the nozzle, and depending on the design of

the tunnel, this process can be classified ranging anywhere from quasi-steady to

mildly unsteady. In the case of pulse facilities, this process may even be classified

as highly unsteady.

A simulation was thus performed to judge the effect of unsteadiness present

during the wind-tunnel startup process. This point is relevant only for the M3

tests, because the intake is self starting at M3.5 and M4, as discussed in the

previous sections.

Figure 2.9 shows the CFD model for the wind-tunnel nozzle and the test

section, along with the M3IoS0.5 inlet model placed inside it.

In this simulation, the far upstream condition was modelled using a pressure

boundary at an infinite reservoir. This provided a good approximation for the
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Figure 2.9: SolverII simulation of wind-tunnel: Mach number distribution in the
nozzle and upstream of the model is shown.

DRDC trisonic facility92, which draws from a bag containing 950 cubic meters of

air at 1 atm, at room temperature, 300 K. The nozzle was based on a deLaval

design matched to the actual tunnel dimensions (with test section 0.6 m in height).

The condition downstream of the test section was also modelled as an infinite

reservoir, but at a pressure of 1× 10−5 atm.

Figure 2.10 shows the nozzle shock entering the test section following the nozzle

starting process. The flow upstream of this shock is steady having a free-stream

Mach number value of three.

Figure 2.11 shows a sequence of frames from the above simulation, immediately

following the nozzle startup. The subsequent process verifies the conceptual stages

shown in Figure 2.1.

For the M3IoS0.5 case, in the inviscid simulation shown here, a section of the

nozzle shock can be seen traversing along the ramp. Eventually, it settles as a

bow wave, just upstream of the cowl lip; this process took '10 ms. Figure 2.12

shows the uniform steady upstream flow with an unstarted inlet in a Mach three

flow. This result demonstrates that the unsteady effects present during the tunnel

startup should not lead to intake starting at M3.

Lastly, steady flow results for the three Mach numbers are shown in Figures

2.12, 2.13, and 2.14.
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Figure 2.10: Numerical simulation of the wind-tunnel start-up. A started nozzle
can be seen with the normal shock approaching the inlet. The flow features are made
prominent by using a contrast-enhancement filter over the density gradient field (pseudo-
schlieren with circular knife-edge).

Figure 2.11: Numerical simulation of the tunnel star-up (with enlarged view of the
model from Figure 2.10). Motion of the shock as it travels along the ramp is shown.
Stable shock location upstream of the cowl lip is shown in the last frame. Relative time,
as compared to first frame: t− t0 = [0, 2.28, 4.18, 6.46, 7.98, 9.88, 11.8, 13.7] ms.
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Figure 2.12: Unstarted flow in an inlet (M3IoS0.5) operating at free-stream Mach
number of 3.0 (enlarged view of the model from Figure 2.9). Mach number distribution
is shown.

Figure 2.13: Started flow in an inlet (M3IoS0.5) operating at free-stream Mach number
of 3.5. Static pressure normalized by free-stream conditions is shown (value on ramp
' 2.15, and ' 4.16 at the top wall behind the reflected shock.)

Figure 2.14: Started flow in an inlet (M3IoS0.5) operating at free-stream Mach number
of 4.0. Static pressure normalized by free-stream conditions is shown (value on ramp
' 2.35, and ' 4.90 at the top wall behind reflected shock.)
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2.4.5 Wind Tunnel Model

Based on the above analytical and numerical considerations, a computer aided

design (CAD) model (Figure 2.15) was created and manufactured for testing in

the DRDC trisonic wind-tunnel at M3, M3.5, and M4, coinciding with the avail-

able nozzle blocks. As already indicated, this particular experimental setup was

designed as part of a broader research program100, with the aim to establish ex-

perimental capability for testing membrane rupture (§1.3.2.2). In the present

context, the aim was to (1) establish the off-design starting characteristics under

quasi-steady conditions and (2) to determine the effect of wind tunnel unsteadi-

ness on the starting process. To satisfy the second test requirement, the model

was equipped with a pneumatically actuated, and electronically preprogrammed

back door (Figure 2.16).

A sectioned view of this CAD model is shown in Figure 2.15. The model

contained 43 pressure taps; 15 of these were staggered along the main ramp, at

one inch spacing, as shown in Figure 2.15. A fan-like distribution of taps (3×4) was

drilled in each side-wall (tap needles are visible in Figure 2.16). The pressure data

was collected using a scanning transducer module (model: ESP-32, s/n: 32821,

calibrated with a worst case accuracy of ±0.15 %FS over a range of ±5 psi). The

data reduction and post-processing was performed using available software105.

2.5 Experimental Results

Several experimental tests were performed to examine the net effect of wind tunnel

flow unsteadiness on inlet starting. The unsteady flow is produced naturally as

part of the initial tunnel startup process.

The model was tested at M3, M3.5, and M4 with corresponding Reynolds
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Figure 2.15: Sectioned view of the CAD model. The pressure tap holes are enlarged
to enhance the view (actual diameter of the drilled holes was 0.020 inches).

(a) Opened (b) Closed

Figure 2.16: A four-bar “back door” mechanism fitted on the aft side of the model
as mounted in the test section. Images are taken from a high speed video footage of
the open/close/open cycle: (a) open configuration; (b) closed configuration, holding
internal air pressure at M3.5.
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numbers of Re7.8, Re6.0, and Re4.7 (in millions per meter). The model size was

determined based on blockage considerations at M3 (test-section 0.6 × 0.6 m2),

with a free-stream capture of 4.75× 4.5 in2, and an overall length of ' 17 in.

Figure 2.17a shows a sequence of frames sampled at Mach 3 after steady flow

was established in the test section. The first frame shows an unstarted inlet with

the back door fully open. The back-door was then closed midway through the run

(the middle frame) and then opened again (the last frame). Figure 2.18 shows the

same process in the form of an animation.∗ This colour encoded spatial mapping

of the four-dimensional data (p(x, y, z, t)) allows one to easily recognize global

presence of shock waves; i.e., sudden changes in colour occur in a neighbourhood.

In this way, presence of a bow-like wave at the ramp with high pressures at the

top wall enables one to readily classify the flow as unstarted. When the back door

is closed (middle frames), the pressure in the enclosed section jumps (everywhere)

to a high value (stagnation pressure aft of the bow shock).

Referring to Figure 2.18, it is seen that the level of unsteadiness, as produced

in this test, was insufficient to overcome the steady-state limitation on flow start-

ing at the Mach 3 design-point. The inlet was unstarted after tunnel startup

(Figure 2.17a); this ruled out any measurable effects from the initial tunnel tran-

sience/unsteadiness, on the final outcome. Referring to Figure 2.18, a close/open

cycle of the back door also showed the same result. This M3 test was repeated

several times, and the results were found to be consistent, always leading to an

unstarted inlet.

Similar tests conducted at M3.5 and at M4 always resulted in a started intake,

as shown in Figures 2.17b and 2.17c, respectively. The corresponding animations

∗The author favours this format of presentation because of its compactness—arguably, it is
also more readily grasped than the traditional plot form. Reader interested in the latter form
may refer to Appendix D, pp. 179.
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are shown in Figure 2.19 and Figure 2.20. Restarting of the inlet after a mechan-

ically imposed unstart is generally considered to be definitive proof that the inlet

will self-start at similar conditions106.

2.6 Summary

An analytical, numerical and experimental study was performed to understand

the flow starting process in a planar, mixed-compression ramp intake.

A novel analytical model was proposed to predict off-design self-starting be-

haviour; its application was demonstrated for a particular two-shock ramp intake.

The calculations were compared with the CFD result lending credence to the

assumptions made in the analysis. The proposed method was compared with

the traditional models of quasi-steady starting in ramp intakes and agreed more

favourably with observations made in the computer simulations.

In the numerical simulations, the self-starting behaviour of the intake was

studied at three different Mach numbers using a caloric, inviscid gas model.

Experimentally, the obvious differences in flow configuration at the three Mach

numbers were explained in terms of self-starting characteristics. It was observed

that the intake self-started at M4, and M3.5, but did not do so at M3. However,

the M3.5 case was found to be very close to the self-starting limit (as intended).

These results supported the analytical arguments.

It was found that the level of unsteadiness, present during the startup process

of the DRDC trisonic wind tunnel, did not have a measurable effect on the intake

starting outcome.
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M∞ = 3 (R10330) M∞ = 3.5 (R10329) M∞ = 4 (R10344)

(a) (b) (c)

Figure 2.17: Wind-tunnel experiments with back door. Pressure field is reconstructed
from discrete readings at the pressure taps. Dark blue signifies low values; deep red
indicates high values. Left column: M∞ = 3 (R10330). Middle column: M∞ = 3.5
(R10329). Right column: M∞ = 4 (R10344). Top row: steady result after tunnel
startup and before door closing. Middle row: state during the closed-door operation.
Bottom row: steady result after door opening. Also see Figure 2.18, Figure 2.19, and
Figure 2.20.
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M3 experimental data, click here

Figure 2.18: Wind-tunnel experiment at M3 with back door (R10330). Movie shows
the normalized pressure field (p∞ = 1), reconstructed from discrete readings at pressure
taps shown in Figure 2.15 and Figure 2.16.


R10330.avi
Media File (video/avi)
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M3.5 experimental data, click here

Figure 2.19: Wind-tunnel experiment at M3.5 with back door (R10329). Movie shows
the normalized pressure field (p∞ = 1), reconstructed from discrete readings at pressure
taps shown in Figure 2.15 and Figure 2.16.


R10329.avi
Media File (video/avi)
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M4 experimental data, click here

Figure 2.20: Wind-tunnel experiment at M4 with back door (R10344). Movie shows
the normalized pressure field (p∞ = 1), reconstructed from discrete readings at pressure
taps shown in Figure 2.15 and Figure 2.16.


R10344.avi
Media File (video/avi)





Part II

Singularity in Shock Dynamics

53





Chapter 3

Shock Wave Propagation

The theory of propagation of shock waves is one of a small class of mathematical

topics whose basic problems are easy to explain but hard to resolve.

Peter D. Lax.

3.1 Physical Scenario

In the investigations which follow, we are primarily concerned with the motion of

a shock wave, say, inside a channel of non-uniform cross-section. The distinction

between shock dynamics and the broader category of fluid dynamics may be con-

sidered as one based on the degree of approximation. The broader subject of fluid

dynamics deals with the motion of fluid particles or elements and their behaviour

in a global sense, including the dynamics of any shock waves that may occur in

that fluid. The narrower field of shock dynamics is concerned with “problems

where the non-linear geometrical effects play the biggest role and the interactions

with the flow behind are not responsible for the major changes in the shock mo-

tion”91. The dynamic behaviour of a shock wave may itself be quite complex and

can lead to highly non-linear phenomena, especially as it relates to wave propaga-

55
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tion through regions of non-uniform flow or through sufficiently large variations

in cross sectional area of the channel.

3.1.1 Connection to Starting/Unstarting

As an example, consider the motion of a right-facing∗ shock wave entering and

traversing a channel; now imagine that this flow evolves under the influence of

some transient force, beginning with the initial configuration as shown in Fig-

ure 3.1a. Also, suppose that during the early stages of the process, the wave en-

ters and continues its leftward motion in the channel (Figure 3.1b). Subsequently

then, depending on the balance of internal and external forces, the dynamic be-

haviour of the wave may, in general, lead to one of three possibilities: (1) the

wave continues leftward (b–dI–eI–fI); (2) the wave slows down and becomes sta-

tionary in a metastable sense (c); or, (3) the wave slows down, becomes stationary

momentarily (c) and reverses its motion, backward out of the channel (dII–eII–fII).

A schematic of the corresponding wave motion/trajectory is best shown in a

space-time† plot; the reader should briefly glance at Figure 3.2. It shows how the

evolutionary process terminates once the transient behaviour subsides (t → ∞).

In the steady flow state, the left branch of Figure 3.1 corresponds to Figure 3.2a,

and it describes the shock swallowing process (in the sense of flow starting).

Similarly, the right branch of Figure 3.1 and its corresponding space-time plot

(Figure 3.2c), describe the unstarting‡ process. The middle plot of Figure 3.2

represents a metastable state possibly occurring between the two possible steady

∗See the note at the end of §I.9.1 on Page 225.
†Also called the x-t plot, or just the wave diagram.
‡More precisely, these figures depict failure to start. Unstarting typically refers to a similar

process and shock motion, except that the transition initially proceeds from a fully started flow
state.
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Figure 3.1: Conceptual drawing of the shock swallowing process, leading to either a
started flow-field (the left branch), or, slowing down and reversal of the shock motion,
leading to an unstarted flow-field (the right branch).
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Figure 3.2: Conceptual space-time diagrams depicting three different possible out-
comes following dynamic behaviour of the shock wave. The curve describes the wave
trajectory, i.e., its location as a function of time. The inverse slope of the curve is the
wave velocity. In (a) the wave enters from the right and exits at the left. In (b) the
wave enters from the right, slows down, and becomes near-stationary somewhere in the
middle of the channel. In (c) the wave enters from the right, slows down, momentarily
becomes stationary, and then speeds up and exits on the right.

state outcomes; it may be anticipated that this state is most likely reached for the

critical value of some parameter affecting the final outcome (e.g., critical value of

acceleration required for impulsive flow starting). If the parameter attains a super-

critical value, configuration (a) is reached; if the parameter attains a sub-critical

value, configuration (c) results in the steady state.

The above description helps us in establishing the connection between impul-

sive flow starting, the nonlinear problems surrounding the shock motion, and the

subject of shock dynamics. The modelling of these physical phenomena can be

carried out at different levels of approximation. The major assumptions and their

justifications are provided in the following section.

3.1.2 Basic Assumptions and Modelling

In what follows, the fluid medium (air) will be approximated as a perfect contin-

uum. Furthermore, where the fluid state undergoes a process exhibiting locally

discontinuous behaviour, the domain of interest will be considered geometrically

divisible into individual regions, each exhibiting locally smooth behaviour; the
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neighbouring regions formed in this way will be delineated and connected by a

special boundary representing the discontinuity.

The considered fluid motion is governed by independent conservation laws for

mass, momentum, and energy; mathematically, the Navier-Stokes equations writ-

ten in integral form (also called the weak formulation) are then applicable. In

order to study the essence of the primary phenomenon of interest—in this case

the transient behaviour of a shock wave—some further assumptions are made re-

garding the absence of multidimensional effects and absence of diffusive phenom-

ena. Neglecting these phenomena, the entire flow is described by the quasi-one-

dimensional Euler equations. Here, the quasi-one-dimensional description follows

from neglecting multi-dimensional effects, and the Euler equations follow from

neglecting heat conduction and viscous effects.

Geometrically, this description is exact if the cross-sectional area of the channel

(and the concomitant flow geometry) follows a symmetric form∗. The description

is also accurate when the local geometrical curvature is negligible in relation to

the global flow geometry. Hence, the categorization embodied within the quasi-

one-dimensional Euler equations is applicable in many physical situations, of both

steady and unsteady flows. These equations play a particularly important role in

the analysis of problems in shock dynamics.

In spite of the aforementioned simplifications, a general solution to the Euler

equations is not available107,108. It is not surprising therefore that we have to

resort to approximate methods91. Indeed, even the solutions obtained using the

brute force approach of CFD are only approximate to a sense.

Mathematically, the set of three equations (for the three conservation laws)

∗Three types of geometries belong exactly to this class: uniform sections with planar symme-
try, wedge frustum with cylindrical symmetry, and a conical frustum with spherical symmetry.
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forms a coupled non-linear hyperbolic system. For reasons of convenience, de-

pending on the context, this system appears in various (mostly equivalent) forms∗

in the literature. Here it is sufficient to note that in the shock dynamics literature

either the non-conservative form or the characteristic/compatibility relations are

the most common starting point (§I.8.2 on Page 220). Simplification of these equa-

tions, in certain special cases, enables analytical (exact) solutions; some example

scenarios illustrating the physical concepts are described next.

3.2 Review of Known Solutions

In order to facilitate discussion, it is convenient to explain the basic ingredients of

this work and the relevant terminology by first reviewing some of the elementary

problems closely related to the present case. It is helpful to list the classical

simplifications where the above equations do admit analytic solution/treatment.

The known solutions typically fall under one of four special classes:

1. quasi-steady phenomena admitting stationary-solutions in the quasi-one-

dimensional sense;

2. special initial/boundary conditions leading to simple wave solutions in the

planar case;

3. homentropic solutions in the planar case;

4. sufficiently symmetric flows exhibiting similarity solutions in the planar,

cylindrical, and axisymmetric cases.

∗In the fluid dynamics literature, common descriptions include: weak form, strong form, and
various non-conservative forms (Appendix I).
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3.2.1 Steady-state Example

In the context of intake-related flows, a stationary bow wave standing slightly

upstream of an unstarted intake may be considered a special solution belonging

to the first class (see Figure 1.3a on Page 5). In fact, this situation serves as an

example of shock statics rather than shock dynamics. As already noted (§1.2.1),

the classical report by Kantrowitz and Donaldson describes this steady-state so-

lution, which is borne well by experimental evidence62. This steady-state result

is troublesome in one sense, because it establishes a severe limitation on maxi-

mum permissible area contraction which may easily lead to shock swallowing (flow

starting).

The Kantrowitz-Donaldson limit (Figure 1.5) describes the behaviour of a Pitot

intake under the SoL condition, assuming steady homentropic flow downstream

of the shock.∗ Note that most practical intakes fall in the region between the

two curves shown in Figure 1.5, where the intake fails to start under steady flow

conditions. Indeed, in practise the steady-state limit on starting is the rule rather

than the exception. It is for this reason that the analysis of unsteady (impul-

sive) flow starting and a basic understanding of the concomitant shock dynamics

phenomenon is of interest.

3.2.2 Simple Wave Example

Examples of solutions belonging to the second special class include the purely one

dimensional motion of a gas next to a moving piston (Figure 3.3). The resulting

flow has a special feature such that the disturbances originate from one side only†.

∗In this case, (∂t() = 0, sx = 0); applicable governing equations are listed in §I.6 on Page 217.
†Prior to the reflection of the wave from the opposite wall, the piston face is the only source

of disturbance.
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The classical solution then consists of a simple wave with constancy of two of the

three Riemann variables in the region2 Art. 29. Intuitively we can imagine that

the same situation arises whenever disturbances originate only on one side and

propagate inside a semi-infinite cylinder of constant cross-sectional area initially

containing uniform, quiescent gas (Figure 3.3). Similar solution also exists for the

compression case, except the waves eventually merge∗ to form a shock wave109–112

(an interesting historical account is also provided by Courant and Friedrichs2

Art. 51, pp. 118).

In the case of non-uniform area, new disturbances are continually generated

from both sides, i.e., equations (I.76), on Page 219, are non-homogeneous; hence,

it follows that a purely one-dimensional simple wave does not exist in the more

general case of quasi-one-dimensional flow. However, if the reflected disturbances

are weak (i.e., in the absence of significant accumulation over large area variations)

then an approximate analogy might be possible. Use of such an analogy is made

later on in the formulation of an approximate theory for shock dynamics.

3.2.3 Homentropic Solutions

Examples of the homentropic situation include the reflection of a rarefaction wave

from an end wall, e.g., as occurs in the classical shock-tube problem (Figure 3.4).

During the reflection process, near the left wall there are disturbances emerging

from both sides and their interaction leads to a non-simple region. The exact so-

lution for this case (for polytropic gases) is known due to Riemann2 Art. 38. How-

ever, this solution procedure does not apply to the general case of non-homentropic

flows or to those with geometrical variation. In fact, even for the non-centered

∗Incidentally, the P-M compression intake (Appendix B, Figure B.1a) is based on a two-
dimensional analogue of this case, with the cowl lip placed at the point of wave coalescence.
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t

x

Figure 3.3: Simple wave arising as a result of piston withdrawal. Space-time plot
illustrating two families of characteristic curves; Note that in the present disquisition,
green colour designates C+ family; C− family is drawn in blue; and piston/particle paths
are shown in red. The simple wave solution is applicable only for sufficiently small time
durations, i.e., until reflection of the rarefaction wave occurs at the left wall. Prior
to reflection, no disturbances are generated at the far left, and a simple wave presents
itself as a fan (infinite set) formed of (infinitesimally weak) individual disturbances
originating at the piston face. The constant slope of the individual segments, in the x-t
plot, indicates the constant signal propagation speed ((∆xi/∆ti) = (ui − ci)) for the
individual disturbances.

rarefaction in homentropic, planar flow case, Courant and Friedrichs suggest that

method of finite differences is more tractable! Hence, it follows that if area changes

are encountered or if the flow is non-homentropic (both of these conditions are

present in the case of intake starting) then even the most simple extensions of the

examples discussed here—which may seem very easy to explain—become increas-

ingly difficult to resolve analytically.

The above statements may be used to judge the analytical difficulties which

one would encounter in analyzing the flow starting process in supersonic intakes.

In that particular case the relevant spatial distributions (of entropy and area) are

both non-uniform (Ax and sx terms in (I.82) on Page 220).

3.2.4 Self-Similar Solutions

The study of self-similar solutions appears to be a branch in its own right; an

excellent discussion can be found in Zel’dovich and Raizer113 pp. 792. Some sample

scenarios discussed in the shock dynamics literature are presented here. Take for
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Figure 3.4: Shock tube example—A membrane located at x = 0 initially divides the
tube into two sections. The left (driver) section is at a higher pressure than the right
(driven) section. At t = 0 the membrane is suddenly removed and a centered rarefac-
tion wave thus travels leftward. The non-simple region results when the individual
(left-facing) waves reach and reflect from the wall (manifest as right facing, curved seg-
ments). In the interaction region (curved segments), overlapping disturbances are thus
generated, originating from either side. Outside the interaction region, a right facing
simple wave results (straight segments again). Finally, the entire flow on the left remains
homentropic because the fluid particles originating in the driver section all carry the
same level of entropy until such large time as when they pass through the non-uniform
shock wave (i.e., t > 0.031 in this particular example).
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example, the above case of initial flow in a shock tube which is a special case

of the generalized Riemann problem; in the absence of end-wall effects (infinite

domain), the flow is entirely self-similar. If the waves are initially generated and

they move apart indefinitely at constant speeds, in constant area geometry, then

no interaction takes place between them, and the self-similar solution scales with

time indefinitely.

Whitham91 points out that an entirely different class of exact solutions is based

on special similarity transforms, such that the flow quantities take on the form

tmf(x/tn) for some constants m and n. These similarity solutions are based on

the special simplifying feature that the transformed partial differential equations

reduce to ordinary differential equations with independent variable (x/tn). The

blast wave produced as a result of an intense explosion, in connection to the atomic

bomb research, was apparently analyzed (ibid.) independently in this manner by

Taylor114,115, Sedov, and von Neumann.

Another example, closely related to shock dynamics, is that occurring in the

shock implosion scenario (Figures 3.5 and 3.6) where a strong shock wave con-

verges toward an axis of symmetry with quiescent gas ahead of the wave. An

exact limiting∗ solution of this problem is known due to Guderley116. Guderley

found the pressure at the shock and its velocity related as: p2 ∝ x−2(1−n)/n and

us ∝ x−(1−n)/n with n ' 0.197 294 and n ' 0.394 364 for cylindrical and spherical

shocks in air, respectively. The quoted values are the refined result as found by

Butler using an “electronic”† computer (ca. 1954). From a historic viewpoint,

the procedural determination of the similarity exponent itself has demanded at-

tention, including Sedov (ca. 1959), Stanyukovich (ca. 1960), and Zeldovich and

∗Strictly speaking, the similarity solution only holds in the limit Ms →∞
†At the time, the term computer was used as a title for a skilled person dedicated to per-

forming laborious calculations by hand.
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Figure 3.5: Shock implosion problem—A cylindrical (or spherical) wave converges
toward its axis (or point) of symmetry, becoming stronger until it collapses at the
centre. The wave has singular strength at the centre, and reflects as an outgoing wave
which becomes weaker with passage of time.

Raizer (ca. 1967)113. In 1974, Yousaf117 provided the result correct to 12 decimal

places. Lazarus (ca. 1982) provides intuitive arguments for seeking self-similar

solutions and examines the possibility of similarity solutions with more than one

discontinuity118. Most recently, Hafner119 provided the exponent for the implosion

case to 30 decimal places!

Inspired by the above results, other closely related solutions have also been de-

vised successfully by various researchers. Jones120 and later Sakurai121 considered

the problem where a planar shock wave propagates into a non-uniform density

field; Sakurai considered a power law distribution (ρ1 ∝ xα, for some constant α)

and found the shock velocity relation as: us ∝ x−λ, for various values of density

distribution parameter α; e.g., with α = 1, he found that λ ' 0.202 140 for a

shock wave in air.

Except for the successful cases cited above, broader similarity solutions do not

exist in general, because not all shock motions necessarily contain a sufficiently

high level of symmetry. Even for the shock implosion problem, the exact solution
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(a) (b)

Figure 3.6: Shock implosion problem. Solution on the left is for initial shock Mach
number, Ms ' 10. Note that in (a) the shock Mach number can be read as a function
of its location Ms = Ms(xs). The shock location can be read as a function of time
xs = xs(t). The CFD mesh used for this case in Asterix1 contained 1000 cells, and
judging by the comparison, this appears to provide sufficient resolution both for the
solution as well as for the extraction of shock trajectory (and the states across it) from
that solution. Also note that Guderley’s similarity solution is exact/accurate only for
Ms >> 1, which is why Ms ' 10 is used here. Comparison between Asterix and the
approximate theory of this work will be made for both strong and weak shock waves later
on. (b) shows the wave diagram for this problem obtained using the Asterix solution
with initial Ms ' 2. For Ms = 10, the result is similar, except the diagram appears
squeezed in the vertical/temporal dimension, which makes it difficult to illustrates the
following points: (i) The incident shock wave is a right-facing wave (for xs ≤ 0, in the
hydraulic sense), hence it is formed by the agglomeration of C+ waves (green); (ii) The
reflected wave is left-facing, hence it is formed by the coalescence of C− waves (blue).
Ahead of the incident wave, particle paths (red) appear as vertical lines, because the
gas there is quiescent; these particles maintain their location until such time as when
the shock arrives. Behind the reflected wave, the flow tends to quiescence in the limit
as t→∞ .
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only holds true in the limit of strong shocks (Ms → ∞). In the general case of

intake flows, neither the geometry, nor the time variant boundary conditions can

be considered treatable in the above sense of similarity solutions. Nevertheless,

the above known solutions are useful in other practical problems,∗ but here the

simple final expression of Guderley provides a guide or check against the other

solution methods (guide for approximate shock dynamics, and check for Asterix1).

A classical theory in approximate shock dynamics is reviewed in the following

chapter, but first it is helpful to summarize the essential points of the present

chapter.

3.3 Summary

In studying shock dynamics, one is primarily interested in the shock motion (as

opposed to the fluid dynamics). Then, the aforementioned scenarios occurring

in intake flows (§3.1.1) may be viewed as special cases of the general phenomena

occurring in shock dynamics.

The difficulties in obtaining uniformly valid solutions to the problems in shock

dynamics are multi-fold: Firstly, the shock wave motion is subject to geometric

effects as the wave traverses a channel formed of non-uniform area (Ax 6= 0). Sec-

ondly, the shock strength changes are accompanied by non-homentropic effects

(sx 6= 0) downstream of the wave; the shock wave then readjusts to the distur-

bances generated downstream of it, leading to a nonlinear interaction between

the two91. Thirdly, the medium in which the wave travels may in general be

non-uniform, e.g., if there are density, pressure, or velocity gradients present in

∗Hafner119 notes that the practical applications relevant to the subject of converging shocks,
range from nuclear weapons to inertial confinement fusion, and from synthetic production of
diamonds to free-of-contact, in situ destruction of renal calculi.
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the fluid upstream of the wave. All of the above effects are present in the intake

starting/unstarting phenomena.

While the exact/general solution to problems in shock dynamics is not known,

there exists a well known approximate theory based on the celebrated works of

Chester89, Chisnell90, and Whitham122. The basic Chester-Chisnell-Whitham

(CCW) formulation is reviewed next in the following chapter.





Chapter 4

Approximate Shock Dynamics

Make everything as simple as possible, but not simpler.

Albert Einstein

4.1 The CCW Approximation

As motivated in the previous chapter, an exact/general solution to problems in

shock dynamics is not known. But, there is a well known approximate theory

based on the celebrated works of Chester89, Chisnell90 and Whitham122, which

provides analytical treatment of many classical problems in shock dynamics first

studied in the 1940s and ’50s (§3.2.4). In essence, the CCW approximation pro-

vides a relation for the dependence of shock Mach number on the area of the shock

wave (or the tube in which the wave travels, in the hydraulic sense). Whitham91

pp. 270 gives this formula as:

1

A

dA

dMs

= −g(Ms) (4.1)
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where, A(x) and Ms are the area and shock Mach number, respectively. g(Ms) is

a well behaved monotonically decreasing function given by91 pp. 269:

g(Ms) =
Ms

M2
s − 1

(
1 +

2

γ + 1

1− µ2

µ

)(
1 + 2µ+

1

M2
s

)
(4.2)

where the quantity µ is the Mach number of the shock relative to the flow behind

it, as given by (I.117). We will make reference to the above g(Ms) function later

on in connection to (5.9) of the present work. An equivalent relation, obtained by

linearizing the governing equations, is given in Chisnell’s article90 pp. 290:

− 1

A

dA

d ξ
=

1

γ ξ
+

1

ξ − 1
− γ + 1

2{(γ + 1)ξ + (γ − 1)}
(4.3)

+

[
2

γξ{(γ − 1)ξ + (γ + 1)}

] 1
2

(4.4)

×
[
1− (γ + 1)(ξ − 1)

2{(γ + 1)ξ + (γ − 1)}
+

(γ − 1)ξ + (γ + 1)

2(ξ − 1)

]
(4.5)

where ξ = f(γ,Ms) is the pressure ratio across the shock wave given by (I.90). The

above equation also appears elsewhere, including a reference text on the subject

of shock dynamics123 pp. 27.

As already hinted, Chester89 pp. 1298 had already obtained an equivalent

result by “linearizing the problem on the basis of small variations in area along the

length of the tube” building on his own analysis in an earlier article124. In effect,

he found the expression for variation in pressure (δ ξ) after the shock passage,

when the tube consists of two cylinders of slightly different area (δA) connected

by a smooth transition section. Hence, in Chester’s formulation of the problem, no

disturbances exist in the flow behind the shock wave; this is the so called “freely

propagating shock wave” description123 pp. 28. In Chester’s small perturbation
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analysis, it is consistent to apply uniform conditions at the unperturbed shock

location (i.e., in the first cylinder), since the errors introduced in this way would be

second order91 pp. 270. The shock then passes into the second cylinder where the

area and hence the shock strength are also uniform. The transition section between

the two cylinders also contains linearized wave propagation along x− (u2± c2)t =

const, i.e., the characteristics have been approximated by straight lines. It is

this crucial step which leads to a sign change of the area variation term. In this

analysis, the situation is rightfully analogous to the sonic flow (choking) which in

steady flow occurs only at the throat. We will return to this discussion below in

connection to Friedman’s work125.

Following Hayes’126 labelling, the general approach given above is now widely

known as the CCW theory in the literature. But the CCW theory, as such, was

popularized by Whitham122 who offered its derivation as a simple and beautiful,

“characteristic rule” which agreed with the earlier formulae obtained by Chester89

and by Chisnell90 using different approaches. The resulting approximations pro-

vided remarkably accurate solutions for the shock implosion problem and as a re-

sult, the Guderley solution served as a benchmark case in the approximate shock

dynamics literature for some time; most early works in the field discuss/compare

approximate results with this known solution. Aside from the work on the shock

implosion problem, there exists a large amount of literature on the general sub-

ject of approximate shock dynamics; the seminal papers, and perhaps the most

cited works on the subject, can be found in the annals of the Journal of Fluid

Mechanics. All of the literature relevant to the present work, refers directly to

Whitham’s “characteristic rule.”
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4.2 Whitham’s Characteristic Rule

The characteristic rule states122 pp. 340:

First the appropriate equations of motion for the flow are written in

characteristic form. For example, for a non-uniform tube we have

dp+ ρcdu+
ρc2u

u+ c

dA

A
= 0

on a positive characteristic dx/dt = u+ c, where p, ρ, u, and c denote

the pressure, density, particle velocity, and sound speed, respectively.

Then the above characteristic relation is applied (quite illogically it

may seem) to the flow quantities at the shock wave. But these quan-

tities are all known in terms of the shock strength from the Rankine-

Hugoniot shock relations. Thus on substitution in the characteristic

equation, an equation for the variation of the shock strength is ob-

tained. This gives a first-order equation for Ms as a function of A

which can be integrated immediately.

In effect what is suggested in the above passage is to replace (p, ρ, u, c) by

(p2, ρ2, u2, c2) downstream of the shock. For a right facing shock wave, the C+ re-

lation should be used. For a left facing shock wave, the C− relation should be used.

The state “2” quantities should be connected to the state “1” quantities through

Rankine-Hugoniot jump conditions (§I.9 on Page 222). After some algebraic ma-

nipulations, the procedure yields an expression of the form dM/f(M) ∼ dA/A as

given by (4.1). Admittedly, the beauty of the characteristic rule lies not in the

novelty of the final expression, but in the simple, yet effective manner in which

Whitham derived it; (quite illogically it may seem, in his own words122).
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In concluding his general remarks, Whitham notes: “it should be said that the

discussions in this paper still fall short of a full understanding of all the questions

involved; it is still not completely clear to what extent the unexpected accuracy of

the results in some cases should be ascribed to coincidence.” A similar sentiment

is also expressed much later on in his book91 pp. 272, where Whitham notes that

after the quick derivation (referring to the characteristic rule) occurred to him, he

had hoped for a full analysis of the approximation based directly on the governing

equations, and that so far it had not been completed!

However, the above A(Ms) relation proved almost trivial to extend to a variety

of other cases, as discussed below. And, because the final formula agreed with the

earlier results obtained by Chester and Chisnell, which had worked so well for the

shock implosion problem, taken together these results garnered much attention.

So much so that a separate line of investigations can be traced in literature; in

the quest to achieve higher levels of accuracy, a steady stream of articles appears

since the 1960’s. These latter papers deal mainly with justifications and attempts

at perfecting the basic technique, especially for application to physical scenarios

which it was not initially intended to address.

4.3 Modifications and Corrections

In integrating Chester’s solution, Chisnell initially made the same assumption

regarding “freely propagating shock wave”; he then attempted to include the

modifying effects resulting from the elementary interactions between the back-

ward (“reflected,” or C− and C0) waves and the area variation downstream of the

shock wave. These interactions lead to (“re-reflected,” or C+) disturbances, which

Chester incorporated as correction or modification in the original description. He
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found that the net effect of these re-reflections i.e., the total modification to CCW

was almost negligible for the implosion problem. It is also generally accepted that

the correction procedure (especially, higher than first order, i.e., beyond the first

re-reflection) renders the CCW impractical; the procedure would be akin to ap-

plying the method of characteristics by hand. It may be said that the success of

the CCW is attributable to the simplicity of the characteristic rule, rather than

the rules of the characteristics. Nevertheless, the works dealing with corrections

and extensions help understand the limitations of Whitham’s rule and also enable

treatment of broader problems. These works are summarized next.

4.3.1 Sonic Flow Singularity

From the outset, a minor question existed on a possible discrepancy between

Whitham’s characteristic rule and the original description of the flow by Chester.

In Chester’s formulation, the case of sonic flow u2 = c2 leads to a singularity∗

(which he likens to the familiar flow choking process). Yet the same difficulty

does not prevent successful application of Whitham’s characteristic rule in the

implosion problem, where the sonic situation arises for Ms ' 2 for air (γ = 1.4).

On Whitham’s suggestion, Friedman125 studied the problem and found a “non-

linear” correction to the linearized solution of Chester. Chester was aware of

this issue and actually gave an extended account of the scenario leading to the

singular behaviour. However, the original analysis by Chester, as well as the

subsequent treatment by Friedman, both deal only with the singularity in the

negative characteristic (i.e., u2− c2 = 0, which is immaterial for the characteristic

rule)†. In fact, the above omissions appear as deliberate acts with self-criticism89

∗More precisely, the linearized equations contain a possibly singular term (c22 − u2
2) in the

denominator of the area coefficient term.
†Refer to (I.80) and recall that for a right facing shock wave, it is the positive characteristic
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pp. 1300 and hence, the present historical account must not be construed as an

indication of mathematical error made by these authors. In reality, the flows

which were examined at the time did not contain moving gas ahead of the shock

wave, and with that simplification it would have been difficult to anticipate the

case (u2 + c2 = 0).

Not surprisingly then, Friedman found out that the characteristic rule, as

obtained by Whitham, remains unaltered as a result of his non-linear treatment

of the backward disturbances in Chester’s solution. Hence, the above analyses do

not address the possible singularity present in the “characteristic rule” which we

will consider. In fact, both authors note that it would be impossible! It will be

shown in the following chapters that there actually exists an infinitely large set

of conditions which would lead to singular behaviour of the characteristic rule.

Furthermore, these singularities should not be considered as those belonging to

the 0/0 family, which are typically associated with flow choking as encountered in

steady-flow situations at the throat (where dA = 0).

4.3.2 Incorporating Boundary Conditions

Rosaciszewski127 provides a generalization to include downstream boundary con-

ditions and also provides formulae for treating flows in ducts with porous walls.

Under common assumptions with relevant simplifications, he concludes that his

method reduces to Whitham’s characteristic rule. The main contribution then

appears to be the integration of two neighbouring C+ characteristics to determine

the net variation along the shock direction. According to117 the integration of

two neighbouring characteristics was also considered by Oshima (1965) (his re-

sults also appear in an appendix to Ref.128). The integration is performed start-

which plays the important role in Whitham’s rule.
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ing from a downstream boundary where the flow conditions are prescribed. In

the present scenario, the flow between the wave and the downstream boundary is

not known/modelled sufficiently. Even with the higher order corrections offered,

the final expressions in127 agree with Whitham’s result, which exhibits singular

behaviour in the present case.

4.3.3 Non-uniform Upstream Medium

The non-uniform medium upstream of the shock may be classified into three sep-

arate categories: The first (classical, most well known) case is that of a quiescent

gas with static density variations. The second (less classical, but still well known)

case is that of moving gas, albeit with steady state prescribed as a known solution

upstream of the shock wave. The third case (considered in the present work)

arises due to both spatial and temporal variations in the flow upstream of the

shock wave. The literature dealing with the first two cases is reviewed in the

following subsections. The third case is considered in the following chapter.

4.3.3.1 Quiescent Gas

Hayes126 considers the shock propagation in a medium with exponentially varying

density, and refers to Sakurai’s work121, who had studied a power-law distribution.

Hayes also obtains a similarity solution for his problem and compares the result

with CCW. He notes that in contrast to the shock implosion problem (where the

results are “so excellent as to be uncanny”), for the exponential density distribu-

tion the similarity exponent from CCW approximation is in error by about 15%.

With Sakurai’s power-law121 the error is somewhat less (about 10%).
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4.3.3.2 Non-quiescent Gas, Steady Flow

The case of a shock wave propagating in a channel with non-uniform area and with

steady upstream flow pre-established in the channel is discussed in a reference∗

text by Han and Yin. Their derivation follows Whitham’s characteristic rule to

the letter, i.e., they begin by substituting the parameters downstream of the shock

(state 2) into the C+ characteristic relation. The novel idea is to employ the steady

homentropic relations for the conditions upstream of the wave (state 1). Their

final result is as follows123 pp. 167:

dMs = G1dm1 (4.6)

dA

A
=

m2
1 − 1

1 +
γ − 1

2
m2

1

· dm1

m1

where, m1 is the upstream flow Mach number, and,

G1 =


m1

T
+

(
γ − 1

2

)
m1m2

T
− m2

S
−
(
m2

1 − 1

m1

)
1

T

(
m2

m2 + 1

)
2m2

(γ + 1)S
·
(

1 +
1

M2
s

)
+

4Ms

2γM2
s − (γ − 1)

 (4.7)

and,

T = 1 +
(γ − 1)

2
m2

1

S =
2(M2

s − 1)

(γ + 1)Ms

+m1

The above equation for dMs will be compared later on with the more general result

of this work (5.8) on Page 92. It will also be discussed in another connection

∗Ref.123 may be considered the reference text on the subject of shock dynamics as of 2008.
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in §5.4.8 on Page 105. In the following section we return to the discussion of

quiescent gas ahead of the shock wave. A set of corrections for both uniform and

non-uniform upstream states was found in the literature and these are reviewed

next.

4.3.4 Yousaf’s Corrections Based on Similarity Solutions

A remarkable series of articles appears during the 1970’s and ’80s written by

a Canadian mathematician at the Laurentian University in Sudbury, Ontario.

Yousaf appears to have been directly influenced by (and collaborated with) Chis-

nell. In the first paper of the series (ca. 1974), Yousaf117 gives a thorough treat-

ment of the shock implosion problem, presenting an exact formulation of the

strength of the disturbance overtaking the shock. He states: “The similarity solu-

tion is used to find the five interaction terms at all points of the flow. This work

confirms that when the strength of the overtaking disturbance is known the CCW

approximation may be modified to become an exact theory.”

As hinted in the previous chapter, it is in the course of this investigation

that Yousaf finds the Guderley/Butler exponent to 12 decimal places; he then

incorporates non-local information from the similarity solution into the CCW

formulation. In this way he determines the correction to be made to CCW, so

that in the limit for strong shock waves, the solution agrees (to all 12 decimal

places) with Guderley’s exact solution.

Using the same approach, in the second paper (ca. 1978), Yousaf129 success-

fully addresses the larger discrepancy (' 10%) reported by Sakurai between CCW

and his similarity solution. For the strong shock case, the CCW is corrected to

match the exact similarity solution. In a followup article coauthored with Yousaf,

Chisnell provides an approximate but somewhat more “tractable” analyitical ap-
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proach. He states: “the simple treatment of the overtaking wave thus provides

a significant improvement to the freely propagating description of the shock mo-

tion.”

In the third paper (ca. 1982), Yousaf130 addresses the discrepancy for the Sedov

problem (an explosion in a medium of uniform density). He notes that the error

in the propagation parameter is ' 70%. Using, again, the similarity solution, he

finds the correction to be applied to CCW.

In the fourth paper (ca. 1985), Yousaf131 applies CCW to the problem where

the shock propagates into a medium with an exponential density distribution.

Recall from previous chapter that Hayes126 found a similarity solution to this

problem. Once again, using the available similarity solution Yousaf finds the

correction to be made to CCW so as to render the latter “exact” for the case of

a strong shock. He later provides an approximate method addressing the same

problem132.

In the final article (ca. 1988), printed posthumously, Yousaf133 returns to the

Sedov problem, starting with the results given in the original three page article130.

He expands the original discussion and analyses the various interactions occurring

downstream of the shock wave produced by an intense explosion. Based on the

above articles, his main conclusion is that where there is a mutual cancellation of

the interacting waves, the CCW theory is accurate. In particular, Yousaf reports

that the interaction which has most influence in the strong explosion problem is

that of C+ with the C0.

In summary, it may be said that with his mathematical ability Yousaf virtu-

ally lends the CCW theory the only bona fide set of corrections reported in the

literature. As hinted above, his unique approach involves incorporating nonlocal

information from the exact similarity solutions into the approximate CCW theory.
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In effect, he analyses the interactions among the various waves downstream of the

shock, as well as their interactions with the area change. The net effect on the

shock is then determined by finding the exact strength of the “modifying distur-

bance” at the shock. However, this description should not be taken as a magical

solution that is universally practical and applicable to the arbitrary case. It is

mainly useful in the limit of strong shocks where similarity solutions are available.

In his own words, “of course, the problem of finding correction to other problems

remains.” Hence in general CCW remains, and should be considered as, in what

follows, an approximate theory.

4.4 Summary

The basic approach in the CCW approximation theory leads to a differential re-

lation of the form dM/f(M) ∼ dA/A as given by (4.1). For the simplest case

of uniform, quiescent gas ahead of the shock, a closed form solution (integrated

result) is available due to Chisnell. The approximation discards information gen-

erated downstream of the shock, either as a result of boundary conditions, or due

to interaction of the disturbances with each other and with the area change. This

is described in the literature as the “freely propagating shock wave.”

The original CCW model also does not take into account any variation of pa-

rameters in the upstream flow, which may be classified broadly as either steady

(spatial variations) or unsteady (spatial and temporal variations). The former

case has been discussed by various researchers including Sakurai, Hayes, Yousaf,

and Han and Yin; their corresponding extensions to the respective cases are well

known. For instance, the case of non-uniform (quiescent) gas upstream of the

shock wave falls under the first category; a typical scenario then includes density
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variation upstream of the shock wave as treated by Hayes, Sakurai, and Yousaf.

A higher extension including non-uniform moving gas (steady flow) ahead of the

shock wave is provided by Han and Yin and it also falls in the first category; a typ-

ical scenario then includes shock propagating into an existing steady homentropic

stream in a variable area channel.

The present work further extends the above cases to include both spatial and

temporal variations upstream of the shock wave. This extension is required in

the study of unsteady intake flows, where the upstream (inflow) boundary condi-

tion may in general be time-variant. These extensions are considered next in the

following chapter.





Chapter 5

CCW with Lifting Isentrope

It can scarcely be denied that the supreme goal of all theory is to make the irre-

ducible basic elements as simple and as few as possible without having to surrender

the adequate representation of a single datum of experience.

Albert Einstein

5.1 Review of Ideas

This chapter builds further on the concepts already presented in the preceding two

chapters; the key elements which were discussed, include: (1) the basic notion

of shock dynamics, (2) connection between shock dynamics and unsteady flow

phenomena in intakes, (3) the classical CCW approximation for shock dynamics,

(4) the known extensions and generalization of the basic CCW theory, and (5)

the idea of using an exact or approximately known solution as a guide to extend

the model. Compounding in this manner, the basic CCW model is extended to

the case of unsteady non-uniform flow upstream of the shock wave.

For the sake of completeness, the relevant assumptions within the CCW frame-

work are as follows:

85
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(i) The problem mainly concerns shock propagation in a channel featuring

smooth area variation (either converging or diverging). The shock is considered

to be freely propagating, independent of any interactions among the disturbances

which are generated downstream of it.

(ii) Initially, before the shock enters the channel, there may be some nonuni-

form flow inside the channel; in what follows, this flow is considered homentropic.

At first sight, it may also appear in the theoretical developments below that the

treatment is limited to quasi-steady flows; this is strictly not true, as will be es-

tablished later on in the analysis. Once that condition is relaxed, it will be shown

that it may also be the case that the parameters upstream of the shock are chang-

ing rapidly due to time-varying boundary conditions. Such would be the case

if, say, the channel was subjected to accelerative forces causing its rapid motion

(Figures 3.1 and 3.2 illustrate the physical scenario on Page 57).

(iii) In the present context, the upstream boundary condition and the initial

shock strength must also be given (i.e., specified as part of the problem statement).

From the preceding chapter, we know that the above problem is amenable

to some analysis, following the theoretical framework by Whitham outlined on

Page 74. Such an analysis will be carried out in the next section, however to

facilitate discussion, it is convenient to offer some clarifications first.

5.1.1 Necessary Idiosyncrasies and Terminology

The shock motions which are considered here may generally be quite complex;

for example, a right facing wave does not necessarily travel rightward! To avoid

confusion, a few important notes should thus be made. Without any further loss

of generality, we may limit the discussion to a right-facing shock wave, i.e., all

shock waves considered here are right-facing. In derivations where convenient,
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Figure 5.1: Problem definition. The small case letters denoting local flow Mach
numbers m1, m2, and m∞ indicate that these are signed quantities. In this picture,
all three quantities carry a negative sign since the conceptual flow as depicted here is
leftward. Also, in the inset wave diagram as shown, the shock is moving leftward and
us < 0. Nevertheless, it is a right-facing wave because the flow enters the shock wave
from the right, and hence, where applicable the upper sign should be used in the general
equations (§I.8, §I.9.1).

the appropriate symmetry will be preserved∗. Furthermore, in the lab frame of

reference, the right-facing shock wave may be moving either to the left or to the

right†. Also note, where no confusion exists in the context, the “±” signs are

incorporated to indicate relations for C± (§I.8); in applying the characteristic

rule (§4.2) the same sign convention holds for the right- and the left-facing shock

waves, respectively.

We distinguish between the terms: homentropic and isentropic. The former

implies conservation of entropy along all characteristics in regions of smooth flow,

C± as well as C0. The latter implies conservation of entropy along C0 only. In

either case, if a characteristic crosses a shock wave, the discontinuous jump in

entropy value must be taken into account using the Rankine-Hugoniot relations

(§I.9). The problem statement is defined next.

∗In general, to obtain expressions for a left-facing shock, one may simply reverse the signs
of m1 and m2.

†For further details see the note at the end of §I.9.1 on Page 225.
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5.2 Problem Definition

Referring to Figure 5.1, the problem statement defines area A(x) of the geometry,

the initial states, i.e., shock Mach number Ms(x) at x = xi or x = L, the signed

Mach numbers, m1 upstream of the shock, and in the free stream m∞(t), and the

free stream speed of sound c∞.

5.2.1 Relation to Previous Works

In the final formulae which are obtained below, any of the special parameters may

be set to their trivial values if a simpler problem is to be studied. For instance,

setting m1 = 0 and m∞ = 0 with fixed boundary conditions ∂t(m∞) = 0, should

recover the original relations by Whitham (4.1) on Page 71. For a right-facing

wave m2 and us will then be positive quantities. Similarly, the formulae obtained

below will be equivalent∗ to the Han and Yin result (4.6) on Page 79, if we specify

∂t(m∞) = 0 with m∞ = const and A∞ = const, so that m1 is automatically

determined as m1 = f(m∞, A1/A∞). These statements are offered in anticipation

of the results which will follow, and to explain similarities and differences from

previous works; these statements will be further clarified as we proceed.

5.2.2 Accelerative Motion

To accommodate accelerative motion, a body force term, f(t), representing mass-

specific force directed along x-axis is included in the model; its usage is optional,

and formally independent of any specifications about m∞(t) or the upstream

boundary condition. In the physical context of present work, however, these two

∗Although apparently very different, under common set of assumptions, the expression are
equivalent.
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quantities are coupled because any acceleration of the intake body must also lead

to changes in m∞. The functional relation is: ∂t(m∞) = f/c∞.

The extension to the classical CCW model is presented next.

5.3 Applying Whitham’s Characteristic Rule

With the above assumptions, following Whitham’s arguments, we may begin with

the appropriate characteristic relation (I.78) taken from Appendix I. To describe

the shock dynamics we apply the C+ relation to flow immediately behind the

shock wave:

C± :
1

c2

Dσ (u2)± 1

γp2

Dσ (p2)± m2

m2 ± 1

Dσ (A)

A
=
f

c2

. (5.1)

Here, the area differential is to be evaluated using Dσ (A) = us∂x(A). In essence,

we are seeking a differential relation to be integrated as an initial value problem

(IVP) along the shock wave trajectory. In this case, the Dσ () operator clarifies

the intent, and once that step is taken, this formalism may be dropped safely in

favour of the more usual notation without causing any confusion. Henceforth, in

dealing with an already specified unique direction, it is unnecessary to indicate the

direction each time. The above equation is customarily written in the following

form, which makes it easier to compare with the results found in literature123 Han

and Yin, pp. 65.

C± :
1

c2

du2

dt
± 1

γp2

dp2

dt
± m2

m2 ± 1

1

A

dA

dt
=
f

c2

. (5.2)

The goal now is to substitute shock Mach number Ms in this expression

where appropriate/possible, so that a differential expression of the form dt(Ms) =
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f(Ms)/A dt(A) is sought. In the derivation below, the lone body-force term on

the right hand side is left intact, as it need not be simplified any further; the

same applies also to the coefficient for the area variation (last term on the left

hand side). The left hand side of the equation then consists of two remaining

terms, each of which must now be linked to parameters upstream of the shock.

For calculation purposes, the state “2” can be obtained by applying the Rankine

Hugoniot relations (§I.9 on Page 222). The change in flow speed across the shock

wave is given by (I.108), and the signed Mach number downstream of the shock

is given by (I.115).

Returning to the main relation (5.2), by differentiating (I.108), the first term

can be written using shock Mach number and changes in state “1” as follows:

1

c2

du2

dt
=

1

c2

du1

dt
+

(u2 − u1)

c2

[
1

c1

dc1

dt
+
M2

s + 1

M2
s − 1

1

Ms

dMs

dt

]
, (5.3)

where,
1

c2

du1

dt
= m1

c1

c2

1

c1

dc1

dt
+
c1

c2

dm1

dt
. (5.4)

Note that once the approximations inherent in the characteristic rule are made

(5.1), the above relations are exact. In the Han and Yin model (§4.6) the non-

uniform flow upstream of the shock is fully steady and evaluation of the above

terms in (5.4) does not pose any further challenge. In the present case, the flow

upstream of the shock is both non-uniform and unsteady. This is the point of

departure from the Han and Yin result (§4.6 on Page 79).

5.3.1 Lifting Isentrope

An exact closed form solution to this problem is not known. While it is possible

to solve the entire flow computationally, doing so would be against the spirit of
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the shock dynamics approach. Hence, an approximation must be made at this

point to proceed further. As a first step, in the derivation below, we may attempt

to use the steady-state relations (§I.6), but with variable free stream stagnation

properties. Roughly speaking, the variation in time is approximated by splitting

the temporal and spatial operators, such that the free stream velocity is first lifted

in time, and then the quasi-steady spatial distribution is computed; hence, the

label “lifting isentrope” seems appropriate for such a model. Strictly speaking the

description is valid only in the quasi-steady situation when the temporal variation

in m∞ is small. Then, at first glance it may appear to be a poor approximation

for application to impulsive flows where f = c∞ ∂t(m∞) can be large f/c∞ >> 1

(in terms of non-dimensional time). Fortunately, it turns out not to be the case;

in fact the approach gives surprisingly accurate results (see Appendix G).

Consistent with the lifting isentrope model, we begin by differentiating (I.90)

for non-constant p1, and differentiating Eqs. (I.71), (I.72), and (I.75), for non-

constant stagnation state (i.e., variable total pressure and temperature evaluated

using variable m∞ and constant T∞). Combining the differential expressions, the

second term in (5.2) can be written as:

1

γp2

dp2

dt
=

2

γ − 1

1

c1

dc1

dt
+

4Ms

(γ + 1)

p1

p2

dMs

dt
(5.5)

where,
2

γ − 1

1

c1

dc1

dt
=
T∞
Tt
m∞

dm∞
dt
− T1

Tt
m1

dm1

dt
(5.6)

and,

dm1

dt
= lim

ε→0

1

A

dA

dt
+

(
m∞ −

1

m∞ + ε

)
T∞
Tt

dm∞
dt(

m1 −
1

m1 + ε

)
T1

Tt

(5.7)
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Note that it is possible to rewrite the last expression without the ε terms,

albeit with a caveat to use separate expressions for various physical scenarios

to avoid trouble when m∞ = 0 or m1 = 0. Here, a more uniform approach is

preferred so that in the numerical computations ε is simply treated as a small

number (e.g., 1× 10−99). It effectively enables computations of the classical test

scenarios without any need for extra algorithmic logic. The local ratio of static to

total temperature, Ti/Tt, is given by (I.70).

With the foregoing expressions, we can isolate for dt(Ms) as follows:

dMs

dt
=

1

G

(
−χ1

dA

dt
− χ3

dm∞
dt

+ χ4
dm1

dt
+ χ5f

)
, (5.8)

where, the G function is given by:

G =
2

γ + 1

[
c1

c2

(
1 +

1

M2
s

)
± 2

p1

p2

Ms

]
. (5.9)

It is assuring to note that in the absence of the newer terms, namely the χ multi-

plicands for (dtm∞, dtm1, and f), the g function by Whitham (4.2) on Page 72

is identical in value once (5.9) is multiplied by χ1. Comparison with the result of

Han and Yin also shows the equivalence of the two expressions (by setting f = 0,

dtm∞ = 0 in (5.8).

The χi coefficients are given by:

χ1 = ± m2

m2 ± 1

1

A
(5.10)

χ2 =
γ − 1

2
m2 ± 1 (5.11)

χ3 = χ2
T∞m∞
Tt

(5.12)

χ4 = χ2
T1m1

Tt
− c1

c2

(5.13)

χ5 =
1

c2

(5.14)
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Figure 5.2: Various sample scenarios used below to illustrate application of the gen-
eralized shock dynamics theory.

The χi terms are reminiscent of Shapiro’s elegant idea of separating the influence

coefficients 68 associated with various physical effects present in compressible flow

in a channel. Of course, here one would make reference to the local shock Mach

number instead of the local flow Mach number. Some typical results obtained

using (5.8) are illustrated next.

5.4 Example Scenarios

Favourable comparisons with accurate solution of the governing equations (CFD)

can provide some confidence in the proper derivation of the above equations and

in the validity of the assumptions used therein. To this extent, seven cases are

illustrated in Figure 5.2; in what follows, these examples scenarios will be used to

demonstrate general application of the theory.

In the various cases discussed below, the initial state is first established in a

given geometry using Asterix1 and the computation is saved once a steady state

solution is obtained. In general, the non-trivial (m1 6= 0) saved state is then

used as initial condition in the problem where a shock enters the channel either
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Figure 5.3: Case I: shock implosion problem (§3.2.4). (a) Schematic diagram shows
cylindrical geometry, uniform, quiescent gas ahead of the shock wave, γ = 1.4. (b)
Space-time diagram. (c) Comparison between CCW (5.8) (solid) and Asterix (circles).
The agreement is considered excellent.

from the left or the right. Comparison is then made by integrating (5.8) for the

IVP, starting with a common initial state which is specified as part of the problem

statement. In what follows, “circles” denote CFD solution obtained using Asterix,

and the solid lines describe the results of (5.8).

5.4.1 Case I

Figure 5.3 shows results for the implosion problem described in §3.2.4. Excellent

agreement is evident between solutions from Asterix and CCW (5.8); and for this

particular problem it is as expected. Recall, a similar comparison was already

made between Asterix and the exact solution for the case of a strong shock wave

(Figure 3.6a). As noted, the Guderley solution is not valid for the present case of

an initially weak shock (Ms = 2). In contrast, the CCW approximation appears

to be uniformly valid for this problem as shown in Figure 5.3.

Also, recall the earlier discussion surrounding the singularity for m2 = 1,

as addressed by Friedman. To illustrate that it poses no problems, the present
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case is computed such that it precisely contains such a scenario (I.115); referring

to Figure 3.6b, which corresponds to the above case, it is evident that the C−

characteristics are nearly vertical initially. However, for the right facing shock,

the transonic flow (m2 ∼ 1) downstream of the wave does not pose any problems in

the characteristic rule. In fact, it suffices to note that all such cases corresponds to

the classical scenarios which were examined by Whitham. These contain uniform,

quiescent gas ahead of a shock wave with either subsonic, transonic, or supersonic

flow behind the shock wave. The CCW theory generally offers good approximation

for such problems, with the noted exceptions as discussed in the preceding chapter.

Hence, a more precise statement might read as follows: the CCW theory generally

provides an accurate description of a “freely propagating” shock wave in a uniform,

quiescent medium. It is not clear from the existing literature to what extent the

CCW approximation is valid for flows with non-quiescent gas ahead of the wave.

5.4.2 Case II

Consider a steady, non-uniform, supersonic flow (m1 > 1) ahead of the shock wave

with supersonic flow (m2 > 1) behind the shock wave. The shock wave enters the

channel from the left. Figure 5.4 positively compares the CFD results with the

extended CCW equation obtained above. Considering the simplifications made in

deriving the relation (5.8), and considering the complex flow both upstream and

downstream of the moving shock wave, it is truly surprising how much information

may be gleamed from a single function.

This case confirms the correctness of the χ4 term, as shown by m1(t) in the

top-left subplot. With accurate prediction of m1(t), and with steady upstream flow

(fixed m∞ = 3), all of the upstream parameters must be correct; this is evident

by the velocity and pressure plots. The downstream state is a function of shock
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Figure 5.4: Case II: a left moving diverging channel encounters a right facing shock
wave, Ms ' 3. Smooth geometry model, MD3, IoS0.1. Non-uniform, non-quiescent gas
ahead of shock, no body force present (f = 0). Comparison between CCW (solid) and
CFD (circles). For simplest comparison see the lower right subplot first (Ms vs xs);
the remaining plots show various parameters as a function of time. Initial steady state
values can be read at t ' 1.5× 10−2 when the shock enters the channel; in this context,
m∞ refers to m(x = L) = const. The agreement is generally very good.
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Mach number as well as the upstream state, and slight discrepancies are apparent

where the shock Mach number is not predicted nearly exactly.

5.4.3 Case III

Consider an unsteady, non-uniform, supersonic flow (m1 > 1) ahead of shock,

with supersonic flow (m2 > 1) behind the shock, and a nonzero body force term

(f > 0). The main difference from the previous scenario is that a nonzero body

force term is present. The problem is setup in such a way that a shock wave of

specified strength enters the channel from the left at t = 0. Figure 5.5 positively

compares the CFD results with CCW relation obtained above.

This case provides confidence in the validity of the χ3, χ4, and χ5 terms. The

m∞(t) function is shown in the upper-left subplot and it is predicted accurately.

The right velocity u1 is shown in the upper right plot and it is also predicted

accurately. Note, this case was also repeated for a much larger value of acceleration

(f = 10) and the comparison was found to be equally accurate.

5.4.4 Case IV

Consider a steady, non-uniform, opposed supersonic flow (m1 < −1) ahead of

shock with unsteady subsonic flow (−1 < m2 < 0) behind the shock wave. It is

related to the unstarting scenario. An initially started steady supersonic stream

(m∞ = −3) originates from the right hand side. The problem is setup such that a

relatively weak shock wave (Ms ' 1.6) enters the channel from the left and leaves

an unstarted (subsonic) stream behind itself. Figure 5.6a shows a comparison of

the unstarting process as obtained from Asterix and CCW (5.8).

The correspondence is surprising, considering the fact that the unstarting phe-
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Figure 5.5: Case III: an accelerating, left moving channel encounters a right facing
wave, Ms ' 3. Smooth geometry model, MD3, IoS0.1 Non-uniform, non-quiescent gas
ahead of shock, non-zero body force present (f = 1). Comparison between CCW (solid)
and CFD (circles). For simplest comparison see the lower right subplot first (Ms vs
xs); the remaining plots show various parameters as a function of time. Initial steady
state values can be read at t ' 1.5 × 10−2 when the shock enters the channel; in this
context, the variation in m∞ is due to m|(x=L)(t) 6= const. The agreement is generally
very good.
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Figure 5.6: Case IV: Unstarting of an inlet; (a) comparison between CCW (solid)
and CFD (circles). (b) Space-time diagram, Green–C+; Blue–C−; Red–C0. Smooth
geometry model: MD3, IoS0.1. The agreement is generally very good.
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nomenon is strongly coupled with disturbances generated downstream of the wave.

However, this comparison shows that once a shock wave enters from the left, it

can be self-supporting within the CCW framework and can continue to move

rightward. Also, compared with earlier cases, the shock motion is 20 times slower

(initially, the shock moves very slowly, which incidentally also explains the initial

“bunching up” of the points in the Ms(xs) plot). Despite the large time inter-

val, the local error does not appear to accumulate during the integration; hence,

for such scenarios, the CCW approximation appears to be surprisingly accurate.

Figure 5.6b shows the corresponding space-time diagram, illustrating the entire

flow. Note that the unstarting process brings about violent changes in the flow

structure (compare upstream wave configuration to the downstream one). Some

of the features may be deduced more precisely from Figure 5.6a, but the overall

process is much less apparent. For instance, at x = 0, the shock wave is relatively

weak and causes the flow to slow down from −m1 ' 1.5 to −m2 ' 0.6; similarly

at x = L, the abrupt changes across the shock wave cause the flow to go from

−m1 ' 3 to −m2 ' 0. Also, the C+ and the C− waves directly behind the shock

wave appear to be nearly straight segments; this is particularly true for the C−

waves. The situation is reminiscent of the simple wave solution from §3.2.2; more

on this observation will follow in Chapter 7.

5.4.5 Case V

Consider a steady, non-uniform, subsonic stream originating on the right (−1 <

m1 < 0). A moderate strength shock (Ms ' 3) enters the channel from the

left leaving behind a rightward subsonic stream in the channel (0 < m2 < 1).

Figure 5.7a shows a favourable comparison between Asterix and CCW (5.8).

The corresponding space-time diagram (Figure 5.7b) shows the formation of
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Figure 5.7: Case V: Leftward upstream subsonic flow, rightward downstream subsonic
flow. (a) Comparison between CCW (solid) and CFD (circles). (b) Space-time diagram,
Green–C+; Blue–C−; Red–C0; (c) Schematic diagram.
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a left-facing∗ compression wave leading to a secondary shock wave. Within the

time interval considered, the left facing shock also moves rightward; the situation

corresponds to collision of two opposed flows (rightward flow overcomes the left-

ward flow) in a diverging section. Subsequent formation of the secondary shock in

the diverging section is analogous to nozzle starting process; and, the possible or

eventual stabilization of this shock is analogous to the case of a stationary shock

wave occurring in a nozzle.

5.4.6 Case VI

Consider a steady, non-uniform, supersonic flow (m1 < −1) ahead of shock with

unsteady transonic flow (m2 < 0) behind the shock. It is related to the impulsive

flow starting scenario (§1.3.2.2). Figure 5.8 shows the wave diagram.

A right facing wave enters the channel following sudden removal of a mem-

brane; prior to its rupture, the membrane initially supports the high pressure be-

hind the right facing shock wave situated slightly upstream of the channel (hence

it is usually called the bow wave). In the present context, we only consider shock

dynamics inside the duct, and for the purposes of CCW, i.e., integration of (5.8),

the initial condition are considered known.

For this case, Figure 5.9 shows singular behaviour of the CCW relation, and

(5.8) can not be used to integrate the shock motion. This singular behaviour will

be discussed in the following chapter.

∗Recall colour designations from Page 63
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Figure 5.8: Case VI: Asterix model for the membrane rupture scenario; smooth
geometry, MD3, m∞ = −3, IoS0.9, p(x < L, t = 0)/p∞ = 0.5 (left) and IoS0.8,
p(x < L, t = 0)/p∞ = 1 (right). Initial shock standoff distance is based on data from
Liepmann and Roshko134 Fig. 4.15. The density and pressure behind the bow wave
are assumed instead of the parameters on the stagnation streamline, and the velocity is
linearly distributed such that it attains the correct value directly behind the “station-
ary” shock and is zero at the “membrane” at x = L. Note that a more sophisticated
simulation of this flow is possible77, however for the purpose of present discussions, the
simpler model may be considered sufficiently representative; both starting and unstart-
ing scenarios may be generated, as test cases for shock dynamics, while using reasonable
values of the parameters.
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Figure 5.9: Case VI: Impulsive flow starting scenario. This result shows remarkable
failure of the approximate model, as (5.8) exhibits singular behaviour for u2 + c2 =
0. Compare the m2 = −1 points (three distinct ones) in the top-left subplot, with
the corresponding space-time diagram (Figure 5.8) where the C+ waves are stationary
(vertical), and note that the concept of flow choking is not applicable to unsteady flows.
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5.4.7 Case VII

The second scenario related to impulsive intake flow (§1.3.2.1) occurs following

accelerative motion of the channel. Figure 5.10a shows comparison with Asterix.

Comparing with Figure 5.10b, the comments made regarding the singularity oc-

curring during typical shock passage are equally applicable here as well. The

singular behaviour occurs in smooth flow region.

5.4.8 Some Observations

Inspection of the foregoing expression (5.8) with the χ terms, shows smooth be-

haviour in all terms, except the coefficient for area term, χ1, which has a singularity

at m2 = −1 (and similarly, at m2 = 1 in the case of a left-facing shock). Note that

there is no singularity in this result when m2 = 1 for a right facing shock wave.

This point was discussed in the preceding chapter in connection to Friedman’s

work. It was also illustrated by the example in §5.4.5.

The physical significance of the other singularity (m2 +1 = 0) does not appear

to be well understood as hinted previously (§4.3.1). It is likely that both Chester

and Friedman dismissed this as a pathological case, based on physical grounds,

because in the respective analyses such situations are impossible; in the general

case however, it can not be dismissed.

To the author’s knowledge, the singularity has been only discussed in an ap-

pendix to Ref.135; referring to the G1 function∗ from Han and Yin’s text, the

authors analyze various scenarios based on the sign of dA, dm1, and m1 in con-

nection to their work. The article also shows the behaviour of (4.7) for m1 < 0

for various values of shock Mach number. In interpreting the presence of verti-

∗Recall that it is reproduced for easy reference, as (4.7) on Page 79 in the present work.
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Figure 5.10: Case VII: Accelerative starting scenario. (a) Shows remarkable failure of
the approximate model, as (5.8) exhibits singular behaviour for u2 + c2 = 0. (b) Space-
time diagram, Green–C+; Blue–C−; Red–C0; note the presence of singularity causing
C+ waves arriving at the shock. The agreement is generally not very good.
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cal asymptotes135 Fig. 13, pp. 46 of the cited article, which are caused by the

singularities in (4.7), it states∗:

As seen in figure 13, G1 < 0 up to the point where m2 → −1, at

which the flow chokes immediately behind the shock front owing to

the influence of the area change, which stands on the term in the nu-

merator of the function G1. After the discontinuity in G1 at m2 = −1,

G1 becomes positive.

Once the behaviour of the function G1 is known, the rules for the

interaction of the area change with the shock front can be obtained

from (A 1) [i.e., (4.6)].

The cited interpretation of flow choking owing to the influence of area change

would require that for a regular solution to exist, dA must be zero when G1 is

singular. Hence, the presence of the singularity is likened to that of sonic flow

condition at the throat area in a steady stream. The process of flow choking

describes a limiting condition for maximum mass flux ; whereas the concept of a

limit on the mass flow under steady choked conditions does not extend to unsteady

flows, there exists some confusion in the literature about the physical significance

of this singularity.

5.5 Summary

The basic CCW formulation has been extended to include non-uniform, non-

steady upstream flows. The approach results in a differential relation of the general

form dσ(t) F (γ,Ms(t), lnA(xs),m1(t),m∞(t), f(t)) which is to be integrated along

∗The emphasis is added by the present author.
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the shock trajectory. The lifting isentrope model, furnishes another differential

relation for non-uniform unsteady upstream flow F (f/c∞,m∞,m1, A(xs)/A∞). In

this way, the system is mathematically closed, and comparison of the solution with

Asterix, for a broad set of problems, shows remarkably good agreement.

For the case of impulsive flows leading to intake starting, accurate solution

of the problem may be obtained using Asterix. However, for these cases, a non-

singular CCW solution does not exist in general. That is to say, the above sin-

gularity causing scenario should not be regarded as a pathological case. It is a

typical scenario, one among infinitely many others, where a non-singular solution

to (5.8) does not exist because (u2 + c2 = 0) is encountered at some point in the

shock trajectory. Because the C+ wave is central to the characteristic rule, the

precise conditions causing the singularity must be examined first. This is done in

a brief chapter which follows next.



Chapter 6

Singularity in CCW

God does not care about our mathematical difficulties. He integrates empirically.

Albert Einstein

6.1 Introduction

The present chapter builds on §5.4.8 and §5.4.1, and it establishes the precise

conditions leading to the singularity in CCW. The analysis concerns the variation

of downstream states in the near vicinity of the shock wave, as a function of

the state immediately upstream, and of the strength, of the shock wave. It is

independent of any discussion on if and when such singular conditions arise; i.e.,

it is not the aim of this chapter to show how the shock strength and the upstream

state will be perturbed with area variation and by the changes taking place in the

free stream state. As indicated in the preceding chapters, the sonic flow condition

downstream of the moving shock wave occurs in two different ways; these are

discussed next.
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6.2 Singular Condition, Type I

The first scenario is that (u2 − c2) vanishes at the shock. This issue was known

to Chester89 and he provides a detailed account of the physical scenarios which

would follow this condition. Namely, he suggests that the C− disturbances would

tend to coalesce, leading to non-linear behaviour including flow choking. It is

safe to say that such non-linear behaviour may occur even if the (u2 − c2) 6= 0

(e.g., Figure 5.7b). On Whitham’s suggestion Friedman125 addressed this issue

by retaining appropriate non-linear terms in Chester’s analysis. Incidentally, the

correction which he obtained leaves the Whitham’s characteristic rule unaltered.

It is moot to deal with this case further (Figure 5.3), and in the present context

the other singularity is the relevant one. For shock dynamics performed on a left

facing wave, the situation would be reversed.

6.3 Singular Condition, Type II

The second scenario is that (u2 + c2) vanishes at the shock. This condition is

mentioned in89, but then ruled out as a physically relevant possibility (which

is the correct assessment for the flows discussed in the cited works), as already

discussed in §4.3.1 on Page 76.

Consider the geometry inset in Figure 6.1 which describes a moving right

facing shock wave in an arbitrary upstream state. The shock wave connects the

upstream state to the downstream state through the Rankine-Hugoniot relations

(§I.9.1). These can be easily combined to give a functional relation of the form

f(γ, u1, c1,Ms, u2, c2) = 0. Substituting the condition (u2 + c2 = 0) and the

definition (m1 = u1/c1) into this function, one obtains a relation of the form

m1 = f(γ,Ms). Hence, the expression so obtained, shows the locus of all singular
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2 1

us

u1u2

Figure 6.1: Locus of “singular” states relating upstream state and the strength of the
shock wave. Plot is valid for γ = 1.4.

states as a function of upstream state and the strength of the wave. A plot of this

expression (Figure 6.1) shows almost linear behaviour between singular m1 and

Ms.

m1 = −
2Ms

2 − 2 +
√(

Ms
2γ −Ms

2 + 2
) (
−γ + 1 + 2Ms

2γ
)

(γ + 1)Ms

(6.1)

It is evident from the plot that solution to (6.1) only exists for opposed su-

personic flow (m1 < −1). Note that the above relation is for a right facing shock

wave, and that the same situation would exist whenever (m1 > 1) for a left facing

shock wave. In the general case where the upstream flow is either quiescent or it

flows to the right (m1 ≥ 0), or it is leftward subsonic (−1 < m1 < 0), then no

singular solution exists.
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6.4 Summary

The locus of states leading to singular behaviour in CCW can be obtained simply

by analyzing the Rankine-Hugoniot relations. This analysis shows which scenarios

might avoid singular behaviour in the case of (m1 < −1). With an initially

specified shock wave entering and travelling in a specified area distribution (A(x)),

to avoid singular behaviour in CCW, the state path must either remain “parallel”

to the curve of singular states, or always move “away” from it. In general, for flows

containing m1 < −1, it is possible and perhaps likely (though not guaranteed, e.g.,

Figure 5.6) that the singularity will be encountered. These statements explain

the dramatic failure of (5.8) demonstrated in Figure 5.10, in an otherwise “well

behaved” and “smooth” downstream flow. That is to say, the “singularity” is not

a singularity in the governing equations, rather it is an artifact of one or more

assumptions made in deriving the CCW relation. The issues are resolved in the

following chapter.



Chapter 7

Shock Dynamics—Revisited

Theories of the known, which are described by different physical ideas, may be

equivalent in all their predictions and hence scientifically indistinguishable. How-

ever, they are not psychologically identical when trying to move from that base

into the unknown. For different views suggest different kinds of modifications

which might be made and hence are not equivalent in the hypotheses one generates

from them in one’s attempt to understand what is not yet understood.

Richard P. Feynman

7.1 Quick Review

In the preceding chapters it was established that there exists a singularity in the

CCW theory which prevents its application to certain flows. The precise condition

at which the singularity exists was determined as a function of wave strength and

the upstream state. It was also established that there is no physical significance

to this singularity, and hence, it must be an artifact of one or more assumptions

made in deriving CCW.
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In contrast to Whitham’s characteristic rule,∗ the original works of Chester and

Chisnell, were based on more rigorous analyses, with precise statements on the

assumptions made; whereas Chester began with the three-dimensional equations

of motion and performed an averaging process (in the hydraulic sense), Chisnell

showed that it is sufficient to use the quasi-one-dimensional form at the outset,

before any further assumptions and simplification lead to the shock-Mach number

area Ms(A) relation.

Ignoring for a moment the minor differences†, the three CCW relations are con-

sidered equivalent. Hence it is instructive to examine these together. A cursory

inspection of Chester’s article reveals an important clue; use of steady-state rela-

tions is assumed to connect the states on either side of the area variation. Indeed,

for the problem considered by Chester this assumption was well justified, as re-

viewed on Page 72. Chisnell’s treatment‡ is based on Chester’s description, except

that he started from the one-dimensional equations, and also provided a closed

form relation (he was able to integrate the final differential expression). While

this sufficiently explains the presence of the singularity§ in the final expressions

from Chester and Chisnell, this does not explain the appropriate steps needed to

remove its presence in Whitham’s characteristic rule. To examine the situation

further, and keeping in mind the remarks by Whitham, as quoted on Page 75,

it seems necessary to take a somewhat different approach; after some pondering,

one discovers that a simple analogy, made between the wave like disturbances and

an imaginary smooth fabric floating above the space-time plane, helps to visualize

∗Recall the manner in which it is obtained, as quoted on Page 74.
†Recall the discussions surrounding Type-I singularity, as reviewed on Page 110.
‡Effect of reflected disturbances generated by the shock is neglected. Steady state solution

of Chester’s problem, valid only for large time, is used90 pp. 287.
§The term (m2 − 1)−1 appears in the steady-flow relations for du, dp, and dρ in Eqs. (F.5),

(F.9), and (F.8), respectively.
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and also to resolve some of the mathematical difficulties. It leads to a derivation

where the physical arguments naturally suggest Whitham’s beautiful characteristic

rule, but more importantly, it enables removal of the singularity from the CCW.

7.2 Fault Causing Threads

In the foregoing analysis, it was sufficiently demonstrated that the quasi-one-

dimensional framework admits a rich description of the shock motion, and that it

is relatively easy to trace all waves within a two-dimensional (x, t) space, starting

from their respective origins xi(t0) at the initial time moment. This is not a

novel idea—the wave trajectories and the particle paths were well explored in

various settings by Courant and Friedrichs2. It is the well regarded method of

lines which was known to Riemann and Earnshaw and possibly to Stokes even

before. The space time plots shown earlier in Figures 5.6, 5.7, 5.8, and 5.10, are

but a few examples of the wide ranging phenomena which may be determined in

this manner.

In the present work, however, the above idea has been used in a slightly dif-

ferent manner; here, the waves have often been traced backwards in time.∗ The

space-time plots obtained in this way suggest that the differential equations of

motion may be considered as sufficiently well behaved on either side of the shock

wave. That is to say, it appears adequate to treat the three dimensional sur-

faces (smooth fabric) formed above the (x, t)-plane by the Riemann variables† as

∗Strictly speaking this is not physically possible; but, it was possible to do so in this work
because the full solution from Asterix on either side of the shock wave and the wave trajectory
itself was known for all time.

†The two variables J± ≡ u ± 2/(γ − 1)c which tend to maintain their values along the
respective C± curves, and the entropy s which tends to maintain its value along C0; recall from
Page 68, the J± are non-invariants in this work because of non-homogeneities (Ax, sx, f) 6= 0
present in the governing equations. The third Riemann variable is the entropy which is preserved
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Figure 7.1: A fault forming in a fabric being weaved in space-time from three differ-
ently coloured threads. If the C+ curves were thought of as green coloured threads, then
upon merging they would weave together a green coloured fault. If the C− were imagined
as blue coloured threads, upon their merging a blue coloured fault would appear. In the
left picture, C+ and C0 are the cross-threads, and C− are the fault causing threads. In
the right picture, C− and C0 are the cross-threads, and the C+ are the fault-causing
threads. The two situations are symmetric; the scenario on the right is the one which
is discussed throughout this work.

smooth, differentiable two-manifolds.∗

Conceptually, then, in shock dynamics one seeks the trajectory of an internal

boundary-like curve, B(xs, ts) = 0, appearing as a fault in an otherwise smooth

fabric (see Figure 7.1). It may be imagined that the fabric is actually being weaved

in time, on either side, using three differently coloured cross-threads. The fault

may itself be imagined as two strands of an infinitesimally thin zipper forcing to-

gether threads of a particular colour (say green). After the green threads merge,

they “pile up” inside the fault, but before that can happen, kinks must locally

along C0 curves. The Rankine-Hugoniot jump relations relate these quantities across a shock
wave.

∗The strict definition would require the characteristics as being one-manifolds across which
the derivatives may be discontinuous. Here, the term one-manifold indicates a connected set of
points, with every point having a neighbourhood that looks like a segment of a line136; Smooth
differentiable nature indicates the existence of derivatives along the line. Two-manifold indicates
one higher dimension, i.e., a surface that is locally “disk” like; smoothness implies existence of
derivatives.
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appear in the green threads which approach the fault in an oblique manner.∗ The

variable density of the threads modifies the local strength of the fabric continu-

ously, as, at each identifiable moment a new one arrives from either side of the

fault.

For a right facing shock, in the above analogy, the C+ waves are the fault

causing threads. The C− and the C0 waves on the other hand tend not to pile

up†, as these are the cross-threads which go across the fault, continuing from one

particular side of the shock; i.e., in the fabric being weaved together in space-

time plane, their trajectories indicate the direction of the cross threads. They

appear to refract right at the fault indicating that the properties of the fabric

or medium locally undergo discontinuous change. Of course, with sufficient time,

away from the shock the C− may also tend to coalesce and then a left-facing shock

would form. If the cross-threads originate on the right side of the fault, it is a

right-facing shock, if they originate on the left, it is a left-facing shock.‡

Concluding the analogy, the Rankine-Hugoniot relations provide the rules and

conditions relating the properties on either side of the fault in the fabric being

weaved and zipped together in space-time. Intuitively then, for the two strands

of the zipper, which are themselves one-manifolds, one may seek a differential

relation; once this is done, the shock dynamics approach is akin to zipping up

pieces of fabric that have undergone drastically different (anisotropic) shrinking

on either side. Mathematically, it amounts to integrating the differential relation

for an IVP. The above considerations suggest the existence of differentiable strands

on either side of the shock wave.

∗It is not necessary, on approach, for them to be running in the same direction as the fault.
†Recall, this description is for right facing waves. Reverse would be true for left facing waves.
‡Recall, by definition, the origin of the particle paths determines the facedness. If the fluid

enters the wave from right, it is defined as a right facing wave.
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7.3 Differentiable Faults

At first it seems unusual to associate a shock wave with anything smoothly dif-

ferentiable. However, in shock dynamics, this is precisely the description; a dif-

ferential relation is obtained which is supposed to hold along the shock wave . In

the fault analogy, there is a differential relation which holds along the strands of

the zipper; if it is the green waves which form the strands, then it is only natural

to apply the C+ differential relation to the shock.

However, as already established, the above approach does not provide a suf-

ficiently stable description for all conditions; under certain circumstances, the

differential relation obtained in this manner does not contain non-singular solu-

tions. Because of the non-linearities associated with the shock wave, the physical

situation has most likely been misinterpreted in the literature—at least in some

cases, as mentioned in the preceding chapter. In all such cases encountered here

by the author, it appears that the governing equations do admit a locally smooth

solution. There are many physical scenarios in reality, as was concluded in the

preceding chapter, where it appears possible to obtain non-singular solution to

the fault manifold even though the C+ locally approach it vertically. Indeed, it

seems more natural to think that non-smooth behaviour would occur when a finite

strength wave would approach the shock; if a bundle of threads would simultane-

ously appear, then it is difficult to imagine that their approach would necessarily

be vertical (the contrary seems more likely).

Based on the above considerations, it seems reasonable to think that the de-

sired non-singular differential relation holding along the shock (fault manifold)

must be obtained directly from the governing equations rotated along the local

fault trajectory. If possible, that would give an exact relation; however, it also
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seems unnatural to expect that one would be able to solve the problem locally

along the fault in an exact manner, without regard or dependence on the global

solution. Thus, it is likely that any useful differentiable manifold would only be

solved approximately, unless all pieces of information arriving at the fault were

integrated precisely (i.e., unless individual threads approaching the fault were

traced backward in time precisely).

7.4 Derivation of CCW+

Following the above ideas, the governing equations must first be rotated to apply

along the characteristic directions.∗ The resulting equations (§I.8.3 on Page 220)

describe the variation of Riemann variables in the three characteristic directions

(i.e., along the green†, blue‡, and red§ threads):

C± : D± (J±) = −
(
±γ − 1

8

[
J2
]+
−
Ax
A

)
+

(
γ − 1

4
[J ]+−

)2
1

γR
sx + f (7.1)

C0 : D (s) = 0 (7.2)

As noted in Chapter 3, where Ax, sx, and f are zero, the homogeneous form

of the equations reduces to the familiar form which lead Riemann to discover

the invariants named after him, i.e., D± (J±) = 0 gives J± = const± along the

respective characteristics¶. Strictly speaking, another scenario may be possible

∗It is a standard procedure, e.g., it appears as an assigned problem in Hirsch137 pp. 217.
The necessary steps effectively lead from the equations in §I.3 which are written in terms of
conserved quantities and their fluxes, respectively differentiated along the principal directions
∂t and ∂x, to those written in terms of Riemann variables J± ≡ u± 2/(γ − 1)c, and s, and the
differentials of these variables along the respective characteristic directions.

†D+ () ≡ ∂t() + (u+ c) ∂x()
‡D− () ≡ ∂t() + (u− c) ∂x()
§D () ≡ ∂t() + u ∂x()
¶Except where they cross the shock; there, the Rankine-Hugoniot relations may be used to
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where the Riemann invariants exist while Ax 6= 0: it seems possible that the

combinations could be arranged such that the right hand side vanishes altogether

or becomes negligible, but in general it is not the case, for not all of Ax, f , and

sx are arbitrarily specified.

Referring back to Figure 7.1b, note that there are a total of six variables which

define the states of the zipper strands: J1+ , J1− , J2+ , J2− , s1, and s2. Changes in

these variables determine the evolution of the shock wave—its dynamic behaviour

is determined by the rate at which these quantities change for a given geometry

A(x) and other specified conditions f(t), m∞(t), etc.

In the upstream (1) state, all three waves approach the shock wave, whereas

in the downstream (2) state two leave and one arrives, i.e., no threads originating

on the (2) side ever make it across the fault; that is the defining characteristic of

such a faulty fabric. Given the states at some initial time ts = t0, if the proper

directional rate of change of the Riemann variables can be determined, then a

well-defined IVP may be solved.

For a well-posed IVP, the physical situation with regard to information prop-

agation demands that rate of change of all three quantities J1+ , J1− , and s1 be

specified on the upstream side, while the rate of change of J2− , and s2 be deter-

mined according to the Rankine-Hugoniot relations. The evolution of the remain-

ing quantity J2+ is to be determined using the last green thread just arriving at

the shock. The description is reminiscent of Whitham’s characteristic rule! And,

it is also the point of departure from the CCW formulation; hence, what follows

may justifiably be labelled CCW+.

Equations (7.1) and (7.2) give the rate of desired variables along the three

threads. To determine the correct differential relation valid locally along the

determine the jumps [J±]21 and [s]21 precisely.
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strand, a rotation must be performed. That is to say, the D± (J±) and D (s) must

be transformed into Dσ (J±) and Dσ (s). Carrying out the transformation, one

readily obtains:

Dσ () ≡ ()t + us ()x (7.3)

= ()t +
us
2c

(D+ ()−D− ()) (7.4)

= D () + (us − u) ()x (7.5)

= D± () + (us − (u± c)) ()x (7.6)

=
us − (u− c)

2c
D+ ()− us − (u+ c)

2c
D− () (7.7)

Explicitly applying the last operator (7.7) to the quantity J2+ , it reads:

Dσ (J2+) =
us − (u2 − c2)

2c2

D+ (J2+)− us − (u2 + c2)

2c2

D− (J2+) (7.8)

Note that the coefficients appearing in front of the D± () operators are known

quantities at any given time moment (in the manner of an IVP). Their physical

meaning will be interpreted later on. The first quantity D+ (J2+) is just the rate

of growth of Riemann’s positive characteristic variable approaching the shock and

it is given by (7.1), which was obtained by rotating the governing equations along

the C+ direction. Operating on s2 with (7.5) and with (7.6), and rewriting it

explicitly in physical variables, one obtains:

D+ (J2+) =
−(γ − 1)(J2

2+ − J2
2−)∂x(A2)

8A2

+
(γ − 1)2(J2+ − J2−)2∂x(s2)

16 γR
+ f (7.9)

= −c2u2

A2

Ax +
c2

2

γR(us − u2)
Dσ (s2) + f (7.10)

= −c2u2

A2

Ax +
c2

γR
D+ (s2) + f (7.11)
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The above three expression are identical and exact for isentropic flow, except for

the rotation performed on the direction of entropy variation. These equivalent,

and exact expressions suggest different opportunities for approximation. The last

form is the one used for further developments below, as it leads to the simplest

approximation.

Returning once again to the thread analogy, imagine the magnitudes of J±

as the thickness of the respective threads, i.e., their stretching quality. Note

that the stretching is a linear function of their physical speed in the (x, t) space

and that larger magnitudes of Ax/A and and f and sx would tend to accelerate

the stretching. Then, in (7.8), the second quantity D− (J2+) describes how the

thickness of the green threads varies as one traces forward along the blue cross-

thread. There does not appear to be any obvious way to evaluate this term

accurately; if the D− (J2+) term was evaluated exactly, then there would be no

approximation needed, and the shock motion would be described exactly! As

expected, an approximation must be made.

Recall, the earlier analogy made on Page 62, where it was noted that if all

disturbances originate on the right, then a simple wave results with constancy

of two of the Riemann variables. In our analogy, the threads do not become

stretched over time, and each one maintains a constant thickness; all green threads

have the same thickness; all red threads have the same thickness; but each blue

thread originating on the right has a slightly different thickness, though it remains

constant thereafter. Here, and in general however it is not the case, for J2+ varies

as a result of non-homogeneities Ax, sx, and f . However, if we assume that

variation in J2+ , along the C− waves leaving the shock is negligible then the

situation is greatly simplified. Note, the assumption is not that J2+ is constant

everywhere, or that it is constant along the shock, but that it is nearly so along the
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C− at the downstream strand, i.e., just downstream of the shock wave, along the

blue threads the thickness of the green cross-threads does not change appreciably.

Whenever this assumption is valid, then the second term in (7.8) vanishes and the

expression may be greatly simplified.

Returning yet again to (7.8), as noted already, the coefficients appearing in

front of the D± () operators are known quantities at any given time moment. Their

physical meaning may be interpreted as ∂t+
∂ts

and ∂t−
∂ts

, respectively, such that:

Dσ () =
∂()

∂ts
=
∂t+
∂ts

∂()

∂t+
+
∂t−
∂ts

∂()

∂t−
. (7.12)

This is suggestive of a geometric interpretation, viz., that a locally Euclidean

triangle is formed in the fabric over (x, t) space by the blue and green threads

with the strand as the hypotenuse. Then, applying (7.8) locally is equivalent to

approximating the fabric as a two-manifold, as originally assumed.

Applying (7.8) to (7.11), and letting D− (J2+) = 0, one directly obtains:

[1, 0, A13] ·Dσ ([J2+ , J2− , s2]) = b1 (7.13)

where,

A13 = − c2

γR

and

b1 =
(
−c2u2

A
Ax + f

)
∂tst+.

The choice of notation here is very convenient both for derivations and for practical

calculations; this will become clear shortly. Here, b1 is the right hand side which

forces the evolution Dσ () of the state vector [J2+ , J2− , s2] along the fault.

Similarly, an implicit relation for Dσ (J2−) and Dσ (s2) can be obtained most
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easily by differentiating the Rankine-Hugoniot relations with respect to shock

Mach number and then relating Dσ (Ms) to entropy Dσ (s2) using (I.111). Con-

sider for a moment (I.105) which is the same quantity as (I.108). Differentiating

(I.108) one obtains:

[1, 1, A23] ·Dσ ([J2+ , J2− , s2]) = b2 (7.14)

where,

A23 =
−4c1

γ + 1

(
1 +

1

M2
s

)
∂sMs,

and

b2 = 2 Dσ (u1) +
4

γ + 1

(
Ms −

1

Ms

)
Dσ (c1) .

Similarly, differentiating (I.96) which is the square of (I.100), gives:

[1,−1, A33] ·Dσ ([J2+ , J2− , s2]) = b3 (7.15)

where,

A33 =
−4c1

γ + 1

∂

∂Ms

(
c2

c1

)
∂sMs,

and

b3 = 2 Dσ (u1) +
4

γ + 1

(
Ms −

1

Ms

)
Dσ (c1) .

As suggested, leaving (7.13), (7.14), and (7.15) unaltered, it is convenient to

assemble the three differential equations into a linear system of the form A·x = b:
1 0 A13

1 1 A23

1 −1, A33

 Dσ


J2+

J2−

s2

 =


b1

b2

b3

 (7.16)
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Hence, given the initial state x(0) = [J2+ , J2− , s2]0 and the right hand side forcing

function, the IVP is easily integrated as x(t) =
∫
σ

A−1b dt + x0. The upstream

state [J1+ , J1− , s1] is obtained in an analogous fashion, using the lifting isentrope

model.

It is important to recognize that the formulation is not akin to applying the

method of characteristics. It is, just like CCW, an approximate analytical de-

scription in differential form that is supposed to hold along the shock trajectory.

Indeed, it will be shown later on how (7.16) relates to CCW (5.8). The various

cases from the preceding chapter are solved using above formulation next.

7.5 Example Scenarios—Revisited

For succinctness, in what follows the new formulation (7.16) is referred to as

CCW+. Removal of the singularity in CCW+ is seen by analysis of the first

coefficient in (7.8); because it is the ratio of times, it always carries a positive

sign and further, it lies in the range [0, 1] for all Ms > 1, and for arbitrary m1.

Comparison with the “case” results of the preceding chapter as well as other

variations below demonstrate this point sufficiently.

7.5.1 Case I

Figure 7.2 shows results for the implosion problem described in §3.2.4. Note

that the lower-right subplot in these figures shows the four Riemann variables

J±, instead of the shock Mach number as was done in the preceding chapter.

Effectively, it is these variables which are integrated (along with s2, which is

directly related to Ms). The remaining subplots contain physical variables for

consistency and easier comparison with the previous chapter. For the imploding
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Figure 7.2: Case I: shock implosion problem (§3.2.4), comparison between CCW+

(solid) and Asterix (circles). Cylindrical geometry, uniform, quiescent gas ahead of the
shock wave, γ = 1.4. The parameters are plotted as a function of shock location. The
agreement is considered excellent.

shock case, the CCW+ approximation appears to provide results which are in

excellent agreement with the Asterix solution.

7.5.2 Case II

Referring to Figure 7.3, for the second test case from previous chapter, the CCW+

formula (7.16) clearly does not provide as good an approximation as it did for the

imploding shock problem. Recall that CCW (5.8) also exhibited a slightly larger
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discrepancy for this case.

However, it is possible to obtain much better agreement for this case by using

a different approximation as shown in Figure H.1 in Appendix H. It turns out that

for this case, if the term A13 is multiplied by the dimensionless ratio c2/(u2− c2),

then excellent agreement exists; while no satisfactory explanation or justification

has been found, it is reported here as a fact for future reference only, and hence,

it should not be judged as an improvement over the more general and justifiable

result of (7.16).

7.5.3 Case III

Recall this case is similar to the previous one, except that a non-zero body force is

present (f = 1). Referring to Figure 7.4, the level of agreement is exactly similar

to the scenario presented above in Case II. Also, as before modifying the A13

term by multiplying it with the non-dimensional ratio c2/(u2 − c2), dramatically

improves the accuracy. This case was also tested for various other values of f ,

including f = 10 as shown in Figure H.2 in Appendix H; the agreement with

Asterix is found to be similar or slightly better than the present case.

7.5.4 Case IV

Referring to Figure 7.5, for the fourth test case from previous chapter, the CCW+

formula (7.16) clearly does not provide a good approximation. The trends are

physically correct, except the shock moves faster than the true solution. Inciden-

tally, the same case also arises when the inlet fails to start ; this occurs in “Case

VI” in connection to membrane rupture, and in “Case VII” in connection to accel-

erative starting. In the preceding chapter this scenario was included as a separate
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Figure 7.3: Case II: a left moving diverging channel encounters a right facing shock
wave, Ms ' 3; comparison between CCW+ (7.16) (solid) and CFD (circles); non-
uniform, non-quiescent gas ahead of shock, no body force present (f = 0); m∞ refers
to m(x = L) = const; Smooth geometry model: MD3, IoS = 0.1. The agreement is
considered fair; the discrepancy appears in J2− and J2+ in the lower-right subplot.
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Figure 7.4: Case III: a left moving diverging channel encounters a right facing shock
wave, Ms ' 3; comparison between CCW+ (7.16) (solid) and CFD (circles); non-
uniform, non-quiescent gas ahead of shock, non-zero body force present (f = 1); m∞
refers to m(x = L) = const; Smooth geometry model: MD3, IoS = 0.1. The agreement
is considered fair; the key discrepancy appears in J2− and J2+ in the lower-right subplot.
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case, because the singularity in CCW prevented its natural occurrence. Recall

that the accuracy of the CCW for this case was found to be truly surprising.

7.5.5 Case V

Referring to Figure 7.6, for the fifth test case of previous chapter, the CCW+

approximation appears to provide excellent agreement with the Asterix solution.

The level of agreement is similar to the earlier CCW solution; except for the u2

plot, the two (CCW and CCW+) solutions appear so similar at first glance, that

it is difficult to distinguish between these.

7.5.6 Case VI

This scenario is related to impulsive intake flow (§1.3.2.2) which occurs following

the rupture of a membrane. Recall that for the membrane rupture case shown in

preceding chapter, the CCW theory exhibits singular behaviour.

Figures 7.7 and 7.8 show the solution for two different scenarios obtained using

CCW+ and compared against Asterix. The first figure is for MD = 3, IoS = 0.8,

without low internal pressure inside the intake before rupture p(x < L, t0)/p∞ = 1.

In this case it is seen (Figure 7.7) that the intake fails to start.

The second case is for MD = 3, IoS = 0.9, with low internal pressure inside

the intake before rupture p(x < L, t0)/p∞ = 0.5. In this case it is seen (Figure 7.8)

that the intake impulsively starts following the membrane rupture.

While CCW+ is not singular and it is able to predict the correct net outcome

for this case, the solution must still be considered poor in terms of agreement

with Asterix. On the one hand the poor agreement is not surprising, because this

case involves strong interaction between the downstream flow and the shock wave.
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Figure 7.5: Case IV: Unstarting of an inlet; comparison is shown between CCW+

(solid) and CFD (circles); smooth geometry model: MD3, IoS = 0.1. The agreement
is considered fair; recall, CCW gives virtually exact agreement in this case. Also, it is
should be noted that generally speaking, for a stronger initial disturbance at the back
(e.g., Ms = 3 instead of Ms = 1.6) the agreement will be better.
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Figure 7.6: Case V: Leftward upstream subsonic flow, rightward downstream subsonic
flow; comparison is shown between CCW+ (solid) and CFD (circles); smooth geometry
model: MD3, IoS = 0.1. The agreement is considered excellent.
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On the other hand, the solution is remarkable in that the simple CCW+ relation

admits such complex reversible shock motion, with overall trends in qualitative

agreement with the full solution of the governing equations obtained using Asterix.

7.5.7 Case VII

This scenario is related to impulsive intake flow (§1.3.2.1) which occurs following

accelerative motion of the channel. Comparing the CCW+ results with those of

CCW from the previous chapter, it is evident (Figure 7.9) that no singularity

exists. However the solution exhibits poor accuracy in comparison with the more

accurate result obtained from the full solution of the quasi-one-dimensional Euler

equations. As with “Case II” above, a simple modification which dramatically

improves the overall accuracy is noteworthy; the modification involves the accel-

eration term which is removed (decoupled) from the forcing function, i.e., from

the b1 term in (7.13). It is however allowed to modify the upstream state through

changes in m∞ using the lifting isentrope model; no justification has been found,

and the term must be present for other cases (“Case III” requires it). This should

be seen as an additional approximation which seems to be beneficial for improving

the accuracy in the accelerative starting scenarios. Some solutions obtained in this

way, for different inlet contractions (IoS = 0.5, and IoS = 0.1) and for different

accelerations (f = −1.5, f = −3.6), are shown in Figures H.3, H.4, H.5, and H.6

in Appendix H. It is noted that the model appears to predict the final outcome

rather well, and considering the complexity of the problem such agreement may

be considered good for this simple model.
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Figure 7.7: Case VI: Impulsive flow starting scenario (membrane rupture, intake fails
to start, MD3, m∞ = −3, IoS0.8, p(x < L, t = 0)/p∞ = 1.0). Recall that CCW exhibits
singular behaviour for this case. While CCW+ is not singular and it is able to predict
the correct net outcome for this case, the solution must still be considered poor in terms
of agreement with Asterix. However, it is remarkable that the simple CCW+ relation
admits such complex reversible shock motion, with overall trends in agreement with the
full solution of the governing equations obtained using Asterix.
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Figure 7.8: Case VI: Impulsive flow starting scenario (membrane rupture, intake
starts, MD3, m∞ = −3, IoS = 0.9, p(x < L, t = 0)/p∞ = 0.5). Recall that CCW
exhibits singular behaviour for this case. While CCW+ is not singular and it is able
to predict the correct net outcome for this case, the solution must still be considered
poor in terms of agreement with Asterix. This is to be expected considering that the
entire wave structure and the concomitant information originating from the downstream
direction is discarded in CCW+.
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Figure 7.9: Case VII: Accelerative starting scenario. Comparison between CCW+

and the full solution of the quasi-one-dimensional governing equations obtained using
Asterix. While CCW+ is not singular and it is able to predict the correct net outcome
for this case, the solution must still be considered poor in terms of agreement with the
more accurate result from Asterix.
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7.6 Some Observations

At first sight, the differences or even the similarities between the CCW+ theory

and the classical characteristic rule are not obvious. It was hinted at the end

of §7.1 and indeed established in §7.3 that the fault analogy naturally suggests a

derivation like the characteristic rule. Both theories lead to a differential equation,

and although CCW+ gives a differential system, the 3×3 matrix is trivial to invert

analytically. However, it does not appear to be practicable to relate the theories in

this way. The task may be achieved in a much simpler way, by carefully retracing

the steps taken in deriving CCW+. After some analysis, it turns out that the

only∗ distinguishing feature between the theories is as follows.

Whereas the CCW+ leads to the system (7.16) with:

b1 =
(
−c2u2

A
Ax + f

) dt+
dts

the CCW relation (5.8) is equivalent to the system (7.16), but with:

b1 =

(
−c2u2

A

us
u2 + c2

Ax + f

)
. (7.17)

Hence, ignoring the f term for a moment,† then the traditional characteristic rule

actually uses a mapping of the C+ onto the shock using:

dt+
dts

=
us

u2 + c2

. (7.18)

In hindsight, that may now seems obvious! but, going in the reverse direction

from a well regarded and well tested theory to discover the physical significance

∗i.e., other than their psychological origins.
†This term is zero in most scenarios treated above and in the literature known to the author.
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Figure 7.10: Comparison between (7.18) and the expression derived here. γ = 1.4.
From left to right, m1 = [0, 1,−0.9,−1.1]. For large Ms the term from (7.16) gives '
0.689, whereas (7.18) gives ' 0.784. The former is always well behaved and independent
of m1.

of u2 + c2 = 0 proves rewarding enough. The proper ∂t+
∂ts

is as given earlier, and

where the f term is non-zero, there does not seem to be any justification for not

including it in the multiplicand. Comparison between these function is presented

in Figure 7.10 for m1 = [0, 1,−0.9,−1.1]. The dependence of (7.18) on m1 is

evident along with the appearance of a singularities for m1 < −1.

Whereas the (7.18) is singular for various values of m1 depending∗ on the shock

Mach number, the coefficients in the relation (7.8) are always well behaved (these

are in fact independent of m1). Also, in the limit of a weak shock, both expressions

agree. Note that for m1 = 0 they are equal at Ms ' 2.

7.7 Summary

An approximate differential relation holding along the shock wave has been ob-

tained using the smooth fabric analogy for the surfaces formed by the Riemann

variables. The final result is labelled CCW+.

It has been shown how the thought of substituting the positive characteristic

∗Incidentally, it must be singular in the same manner as that described in Figure 6.1 where
u2 + c2 = 0.
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onto the shock seems like a natural consequence of the analogy. The analogy also

leads to an easy derivation of an operator which is valid along the shock direction.

Its application to the positive characteristic variable naturally suggests a simple

assumption. By differentiating two of the Rankine-Hugoniot relations with respect

to shock Mach number, the evolution of the Riemann states on either side of

the shock wave is implicitly linked. Combining the three relations, a differential

system is obtained. Its application is demonstrated by way of examples from the

preceding chapter; using additional ones, it is shown that the above rule works

quite well for a variety of problems.

The CCW+ formulation does not contain any singularities when u2 + c2 = 0,

and it is well behaved for any combination of Ms and m1. After removal of the

singularity, it has been shown how the method admits reversible shock behaviour,

predicting both starting and unstarting. The qualitative behaviour is good, how-

ever quantitatively some further improvements must be sought.

The CCW+ is shown to be very closely related to CCW; the differences and

the similarities between the two theories are explained.





Chapter 8

Summary of Contributions and

Conclusions

In the first part of the thesis, an analytical, numerical and experimental study was

performed to assess the flow starting characteristics in an external-compression

ramp-type intake. The analysis was performed within the configuration space,

on either side of the critical condition where the intake was expected to self-

start under quasi-steady flow conditions. This expectation was based on common

understanding existing in the field, consistent with well-cited literature dealing

with starting characteristics of supersonic intakes.

Through analytical and numerical modelling carried out in two space dimen-

sions, it was concluded that the traditional model for predicting flow starting in

the external compression intakes is insufficient for the ramp-type intakes; the ex-

isting popular model, based on one-dimensional flow across a planar shock, was

shown to be inaccurate, especially when these intakes are supposed to start under

conditions away from their specific design point.

To remedy this, a novel analytical model was proposed in the first part of

141
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the thesis to predict off-design self-starting behaviour; its application was demon-

strated for a particular two-shock ramp intake. The calculations were compared

with the CFD results which further lend credence to the assumptions made in the

analysis. Finally, some experimental evidence was presented which further sup-

ports the starting characteristics as predicted by the new analytical model. Taken

together, it was concluded that these results (analytical, numerical, and exper-

imental) constitute overwhelming evidence supporting the arguments forwarded

here.

Hence, the single most important contribution made in the first part of the

thesis is the argument made in favour of using curved shock models for prediction

of external-compression intakes. Application of the basic idea was demonstrated

for a particular two-shock inlet operating away from its design point.

In the second part of the thesis, an analytical and numerical study was per-

formed to assess the feasibility of predicting shock dynamics inside an intake using

a simple, approximate, yet representative model. The basic notion was driven by

the fact that the flow starting phenomenon is inherently tied to shock motion

inside the intake.

It was found that there is very little widely-available knowledge on impulsive

flow starting in the literature, and that there is no systematic study describing

the shock dynamics occurring inside supersonic intakes. Consequently, there is

no existing theory for analytically predicting impulsive flow starting phenomena

discussed in this work.

Hence, it was suggested to the author that the well-known Chester-Chisnell-

Whitham (CCW) formulation for approximating shock dynamics might be ex-

tendible for application to impulsive flow starting phenomena occurring in super-

sonic intakes. Owing to the analytical nature of the work, the entire modelling
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was carried out in the quasi-one-dimensional setting.

It was found that the usual problems studied in shock dynamics are much sim-

pler than the present case. Firstly, the flow upstream of the moving wave is both

non-uniform and unsteady. Secondly, the disturbances originating downstream of

the shock play an important role in intake flows. Thirdly, the flow direction may

be different than that of the shock wave. These facts presented as new challenges,

unrelated to flow starting, but required sufficient attention before actual applica-

tion of CCW could be made to intake flows. Only the first and the third points

have been addressed here.

An analytical model was proposed for predicting unsteady flow inside the in-

take, upstream of the shock wave. It was shown to be highly accurate within

the desired range of applicability. The model was termed lifting isentrope, and

its comparison with time-accurate solution of the full governing equations was

presented as conclusive evidence. Once the lifting isentrope model was coupled

with the classical CCW formulation, it was concluded that the resulting model

sufficiently resolved the first point made in the above para.

It was also found that CCW presented a singularity in most of the cases dealing

with impulsive flow starting situations. The singularity was found to be related

to situations where the upstream flow was in a direction opposite to that of the

shock. For intake flows it is always the case that the flow is opposed to the shock.

Hence, in general non-singular solutions could not be found until the source of the

singularity was addressed.

There is little or no literature on this singularity. It was demonstrated that

the usual singularity dealt with in the existing literature is of a different type.

The limited knowledge available on this singularity was concluded to be false and

not applicable in the present context. Time-accurate solution of the full governing
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equations was presented as conclusive evidence supporting the last claim.

The source of the singularity was then studied; it was found that an analogy

made between the surfaces formed of Riemann variables atop the space-time plane,

and an imaginary smooth fabric containing three coloured threads, helped to

visualize and also to resolve some of the mathematical difficulties. The novel

formulation, labelled CCW+, was proved to be regular in the desired range of

applicability; i.e., it was concluded to be non-singular for all upstream flows,

opposed and not, and for all shock Mach numbers. It was concluded that this

step sufficiently resolved the third problem point mentioned above.

Finally, some sample computations were presented in an effort to evaluate the

CCW+ range of application. It was found that qualitatively the theory gives cor-

rect behaviour of shock dynamics related to impulsive flow starting in supersonic

intakes. However, quantitatively, there remains significant room for further im-

provement. For the classical applications, CCW+ was demonstrated to be similar

to CCW and explanations were provided in support of this point.
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Appendix A

On-design Starting

Characteristics of Two-Shock

Inlets

A.1 Assumptions

Here, the concept of a quasi-steady starting condition is applied to the two-shock

inlet. The air is modelled as an inviscid, calorically perfect gas. For theoretical

purposes, here it is assumed that the inlet is to be started near its design condition.

That is to say, the inlet is designed for Mach MD, and that we are interested in

its self-starting behaviour at M∞ = MD.

A.2 Starting

Consider the geometry of an unstarted two-shock inlet that is operating at a

supersonic value of free-stream Mach number, M∞, as shown in Figure A.1.
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(a) A∞

MD
A∞,2

At

δ1

θ1

θ2

(x0, y0)

(x1, y1)

(x2, y2)

δ2

(b) A∞

M∞

A∞,2
At

θ1

(x4
, y4

)

(x3, y3)

δ1

Figure A.1: Schematic of the inlet formed by using a two shock configuration. a)
started operation at design conditions; b) unstarted operation near design conditions.

The flow undergoes compression from M∞ to M∞,2 across an attached, oblique

shock. In the sub-critical (unstarted) mode, a bow shock is situated some distance

upstream of the cowl leading edge and provides a spillage mechanism. If the inlet is

to start under quasi-steady flow condition, then the bow shock may be considered

quasi-stationary in the sense that no transient accumulation of mass takes place

between the shock system and the exit plane of the inlet. When the inlet is at

the verge of starting (critical mode), the bow shock approaches the cowl lip where

the capture area is A∞,2, as shown in Figure A.1. It is also known that in the

unstarted mode, the throat must be choked (because maximum mass flux, ṁ/A,

occurs at sonic conditions, i.e., Mt= 1). Under these conditions, the geometry of
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Figure A.1 must satisfy an equation of the general form:

0 = f1(M∞, δ1, φ, γ), (A.1)

where,

f1 =
At
A∞,2

(δ1, θ1(M∞, δ1, φ, γ), θ2(M∞, δ1, φ, γ))

− A
K

A∞,2
(γ,M∞,2(M∞, δ1, γ)) . (A.2)

The first term is a geometric constraint describing the area-ratio for the internal-

expansion part in an unstarted two-shock inlet operating near its design Mach

number, i.e., limM∞→MD
(At/A∞,2):

At
A∞,2

=
sin θ1 sin θ2 − sin(π − θ1 − θ2 + δ1) sin δ1

sin θ2 sin(θ1 − δ1)
. (A.3)

This is a composite function, so that the θi terms are formal functions of (γ, M ,

δ, and φ), as discussed further below. The second term in (A.2) is the classical

Kantrowitz function, which describes the sonic to local area ratio across a steady

normal shock wave62.

A
K

A(u)

(
γ,M(u)

)
≡ As
A(d)

(
γ,M(d)

)
(A.4)

According to the Kantrowitz criterion, in the unstarted mode, the flow undergoes

isentropic expansion beginning at state, (d), just aft of the shock wave and ending

with choked flow at As = At, Mt = 1. For steady quasi-one-dimensional, isentropic

flow, the general sonic-flow area is given by the well-known relation104 pp. 6,
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Eq. 80:

As
Aj

(γ,Mj) = Mj

[
1 + γ−1

2
M2

j

γ+1
2

]− 1
2
γ+1
γ−1

(A.5)

The Mach number across the normal shock (used for obtaining the Kantrowitz

function) is given by104 pp. 7, Eq. 96:

M(d) =

√√√√ (γ − 1)M2
(u) + 2

2γM2
(u) − (γ − 1)

(A.6)

The stream-tube area across the normal shock remains unchanged, so that:

A(d) ≡ A(u) (A.7)

The Mach number downstream of the leading edge shock is obtained as M∞,2 =

M(d) (γ,M∞, θ1) using104 pp. 9, Eq. 132:

M(d) = f
(
γ,M(u), θ

)
(A.8)

=

√
(γ + 1)2M2

(u)β − 4(β − 1)(γβ + 1)

[2γβ − (γ − 1)][(γ − 1)β + 2]
, (A.9)

with square of the normal component of upstream Mach number given by:

β = M2
(u) sin2 θ. (A.10)

As stated above, the aerodynamic angle for the leading-edge shock is obtained

here by solving the classical oblique shock relation. It is well-known104 that for

an attached shock, in general, the solution may lie on one of two branches corre-
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sponding to either the strong- or the weak-shock solution.

This aerodynamic shock angle can be obtained on either branch as a gen-

eral solution to a cubic equation104,138–141. For completeness and consistency of

notation, in the remainder of this chapter, it is used in the following explicit form:

θ = θ (γ,M, δ, φ) (A.11)

= arctan

(
b1 + 2d cos

(
σ+φ

3

)
3b2 tan δ

)
, (A.12)

where,

d =
√
b2

1 − 3b2b3 tan2 δ1, (A.13)

with,

b =
[
M2 − 1 1 + γ−1

2
M2 1 + γ+1

2
M2

]T
, (A.14)

and,

σ = arccos

(
b3

1 − 9b2

(
b2 + γ+1

4
M4
)

tan2 δ

d3

)
. (A.15)

Here, φ = 4π for weak-shock solution, and zero otherwise.

In the present disquisition, the leading edge shock always belongs to the weak

family and is formally obtained as θ (γ,M∞, δ1, 4π). The reflected shock is ob-

tained in an analogous manner, except that it may belong to either the strong- or

the weak-shock branch.

In (A.2), At/A∞,2 is obtained after the geometry is constrained by the choice

of any two of the three design parameters (MD, δ1, and θ1), which are uniquely

associated with a given two-shock inlet. Thus, quasi-steady starting behaviour

of the inlet near design conditions can be determined in the (M∞, At/A∞)-plane

and the effective free-stream capture area, A∞ = A∞,1, at M∞ = MD can be
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determined using:

At
A∞

= 1− sin(π − θ1 − θ2 + δ1) sin δ1

sin θ1 sin θ2

. (A.16)

The above relation simultaneously satisfies solution to (A.2), so that for a

given design value of free-stream Mach number, the δ1-parameter is related to

area contraction, and its selection completely specifies the geometry. A plot of

(A.16) in the area-Mach number domain, thus provides the Kantrowitz-like curve

for an on-design, self-starting two-shock intake, as shown in Figure A.2.

A.3 Multiple Solutions

As noted above, the second shock, as represented by the θ2 parameter in (A.16),

may belong to one of two families (corresponding either to weak or to strong

reflected shock). Hence, depending on this choice, the self-starting condition is

described either with the weak or with the strong reflected shock branch, i.e.,

with (φ = 4π) or with (φ = 0), respectively, in (A.12).

Referring to Figure A.2, the new curves (for self-starting) lie below the original

Kantrowitz function. The distance between these curves points out the degree to

which the overboard spillage helps when compared with a fully enclosed duct.

Indeed, a fully enclosed planar inlet can be constructed based on this geometry

(using symmetry about the upper wall), and in the present idealized context, its

starting characteristics would then match the original Kantrowitz curve. While

the performance of the two inlets would be identical once the flow is started, their

behaviour in the unstarted flow would be dramatically different.

The improved starting characteristics shown in Figure A.2 suggest that other

geometries may also benefit to a similar degree. Hence, it is advantageous to
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Figure A.2: Classical Kantrowitz curve applicable to fully enclosed internal com-
pression inlets or Pitot-type intakes; Self-starting ability of two-shock inlets with weak
reflected shock (WRS) and with strong reflected shock (SRS); Area-ratio of a two-shock
inlet with sonic-design (Mt = 1); Maximum permissible area contraction under isen-
tropic compression.

construct other stream traced geometries which provide external spillage in the

unstarted mode, without sacrificing performance in the started mode. While the

advantages of overboard spillage are clear from this analysis, there could be other

factors present, such as flow stability and sensitivity to yaw and angle of attack,

etc., which have not been considered here.

A.4 Unstarting

To determine the limit on supersonic operability of a two-shock inlet, we can

substitute M3 = 1 (downstream of the second oblique shock) in the foregoing

relations. If this condition is used to constrain the geometry, then using the
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relations listed in the previous section, one obtains a new curve for At/A∞, as

shown in Figure A.2. This curve is a lower limit on the permissible area ratio

under highly idealized (on-design) conditions for stable, started operation (su-

personic flow throughout). In practice, viscous effects would actually cause the

inlet to unstart before this limit is reached; such effects are almost always of

physical significance because disturbances originating at a downstream section of

the boundary are able to propagate upstream through the subsonic flow in the

boundary layer.

Comparing this limit to the isentrope, we note that for low values of free-

stream Mach number (viz., M < 2), the two curves lie close to one another. This

result is attributable to the relatively small loss in total pressure across weak

shock waves (low free-stream Mach number in combination with the obliqueness

of the leading edge wave). However, a significant loss in stagnation pressure does

still occur at higher free-stream Mach numbers (increased shock Mach number).

Depending on application, this fact may render the SRS design point impracti-

cal (e.g., in the hypersonic flow regimes). In this respect, the two shock inlet

shows limited potential for applications requiring very high contraction fixed ge-

ometry. Alternatively, for efficient high compression at hypersonic speeds, the

straight compression ramp can be replaced with a suitable planar Prandtl-Meyer

compression surface, as discussed in Appendix B.



Appendix B

On-design Starting

Characteristics of Prandtl-Meyer

Inlets

Consider the geometry of an unstarted P-M inlet that is operating at a supersonic

value of free stream Mach number, M∞, as shown in Figure B.1b. The flow

undergoes isentropic compression from M∞ to M2. A bow shock is situated some

distance upstream of the cowl leading edge. If the inlet is to start under pseudo-

steady flow conditions, then the bow shock may be considered pseudo-stationary

in the sense that no accumulation of mass takes place between the shock and

the exit plane of the inlet. Under these conditions, when the inlet is at the

verge of starting, the bow shock approaches the cowl lip where the capture area is

represented by A∞ as shown in Figure B.1b. It can be shown that in the unstarted

mode, the throat is choked (recall that maximum mass flux, ṁ/A, occurs at sonic

conditions, i.e., Mt = 1).

Consider the flow geometry as shown in Figure B.1a. In the started mode,

169
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when the inlet is operating at design conditions, it is evident that:

At
A∞,2

=
sin (θ − δ)

sin θ
, (B.1)

where, θ and δ are design parameters uniquely associated with a given P-M inlet

(vide Figure B.1a). Comparing the flow geometries between the started and the

unstarted mode, we note that A∞,2 in the started mode is equal to A∞ in the

unstarted mode. For the latter case, if we assume that flow undergoes isentropic

a) A∞,1

A∞,2
At

δ

θs

M∞
M2

Mt

b)

At

M
∞

M2

Bow Shock

A∞

Figure B.1: Inlet formed by using a Prandtl-Meyer compression surface: a) started
operation at design conditions, showing external compression followed by an oblique
shock which turns the flow back parallel to free-stream direction; b) un-started operation
at design conditions, showing external compression followed by a bow shock.
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expansion aft of the bow shock (in Figure B.1b), then it may be shown that:

At
A∞

= M3

[
1 + γ−1

2
M2

3

1 + γ−1
2

]− 1
2
γ+1
γ−1

, (B.2)

where the Mach number, M3, just aft of the bow shock is given by:

M3 =

√√√√ 2
γ−1

+M2
2

2
γ−1

γM2
2 − 1

. (B.3)

Relating Eqs. (B.1) and (B.2), we obtain a relationship for startability of P-M

inlets under design conditions.

sin (θ − δ)
sin θ

= M3

[
1 + γ−1

2
M2

3

1 + γ−1
2

]− 1
2
γ+1
γ−1

. (B.4)

The relationship between M∞ and M2 is strictly determined by geometry of Fig-

ure B.1, given the fact that the drawn compression waves are characteristics,

locally inclined at Mach angles relative to the compression surface. Thus, their

local inclination relative to the surface is given by:

µ = arcsin(1/M). (B.5)

The net flow turning may also be determined using Prandtl-Meyer relation for

isentropic compression between M∞ and M2:

δ = ν(M∞)− ν(M2), (B.6)
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where ν is the Pradtl-Meyer function given by:

ν(M) = φ(M)− arctan (β(M)), (B.7)

with,

φ(M) =
√
C1 arctan

(
β(M)

√
C2

)
, (B.8)

where, C1 = γ+1
γ−1

, C2 = γ−1
γ+1

, and β(M) =
√
M2 − 1.

Equation (B.6) may be substituted in (B.4) to render the latter in the form:

f(γ,M∞,M2, θ) = 0. Isolating for θ in this function, one gets θ = f(γ,M∞,M2),

and with M3 = f(γ,M2) as defined by (B.3):

θ = arctan

 1

cot(ν(M∞)− ν(M2))− M3

sin(ν(M∞)−ν(M2))

[
1+ γ−1

2
M2

3

1+ γ−1
2

]− 1
2
γ+1
γ−1

 , (B.9)

For a given ratio of specific heats, γ, this is an equation in two independent

variables, so that an additional relation for the aerodynamic shock angle, θ, must

be written simultaneously. For a given value of M2, the aerodynamic shock angle

and flow deflection are related by:

0 = −M−2
2 + sin2 θ − γ + 1

2

tan θ

tan θ + cot [ν(M∞)− ν(M2)]
(B.10)

Substituting from (B.9) for θ in (B.10), the latter can be now be solved, for

M2 = f(γ,M∞), to give a unique inlet that is defined by {γ,M∞,M2}. The

resulting inlets give a curve in the Area ratio and free stream Mach number

domain as plotted in Figure B.2. This curve describes the startability of Pradtl-

Meyer inlets under pseudo-steady flow conditions. This is applicable when the
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inlet is to be started by accelerating it slowly from a subsonic value of free stream

Mach number, M∞, to its design Mach number, MD. As with the geometry of

any oblique shock intake (166), there are two separate design curves: one for weak

shock solution and the other for strong shock solution. In this regard comments

made in Appendix A on Page 166 are equally applicable here as well.
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Appendix C

Quasi-one-dimensional Index of

Startability (IoS)

The index of startability is a measure of the difficulty or the ease with which an

inlet is expected to start—especially, when compared to a fully enclosed version

of the same inlet, without any perforations or overboard spillage, and under fully

idealized, quasi-steady free-stream flow conditions. The index of startability is

defined as follows65:

IoS =
At/A∞ − As/A∞
A
K
/A∞ − As/A∞

. (C.1)

Here, At/A∞ is the net area ratio of a designed inlet; As/A∞ is the sonic area

corresponding to isentropic compression from (M∞ and A∞) to (Ms = 1, and At);

A
K
/A∞ is the area ratio corresponding to a fully enclosed inlet operating at M∞

that is just about to start (Kantrowitz condition).

For practical inlets, the above function lies in the range [0:1], and its value

simply indicates a design condition in the area-Mach number plane. For example,

a positive value near zero indicates that under started mode, the inlet is designed
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to operate near the isentropic curve of Figure C.1. An IoS value of unity recov-

ers the Kantrowitz function; above this value an inlet will typically self-start. A

negative value of IoS signifies inoperability (or an unstarted flow) under steady

state operation (even with isentropic compression efficiency). Strictly speaking,

the above description is applicable only to inlets containing quasi-one-dimensional

flow. Nevertheless, according to the above definition, the wind-tunnel model de-

scribed in Chapter 2 is described by the “M3IoS0.5” design point.

The actual self-starting ability of two-shock inlets differs from the above func-

tion. In fact it is described by IoS values significantly less than unity. Similarly,

on-design operation at a given free-stream Mach numbers is possible only in a sig-

nificantly narrower band of IoS values. The supersonic operability of a two-shock
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design is described by IoS values significantly above zero. These two points are

elaborated in greater detail in Chapter 2.





Appendix D

Experimental Data

The 2S-WRS M3IoS0.5 wind-tunnel model contained 43 pressure taps; 15 of these

were staggered along the main ramp, at one inch spacing, while four taps were

placed in the upper wall, as shown in Figure D.1. A fan-like distribution of taps

(3×4) was drilled in each side-wall (tap needles are visible in Figure 2.16). The

pressure data was collected using a scanning transducer module (model: ESP-32,

s/n: 32821, calibrated with a worst case accuracy of ±0.15 %FS over a range of

±5 psi).

Figure D.2 shows the pressure traces (in time) during the back door open-close-

open cycle for the M3 test condition. It is evident that the upon completion of

the door-cycle, the flow reverts to the original configuration (unstarted); although

some temporal variation exists, the flow is generally stable.

Figure D.3 and Figure D.4 show the same process for the M3.5 and M4 cases,

respectively. It is evident that the upon completion of the door-cycle, the flow

reverts to the original configuration (started); in each case, the resulting flow is

generally very stable.
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Figure D.1: Sectioned view of the CAD model. The pressure tap holes are enlarged
to enhance the view (actual diameter of the drilled holes was 0.020 inches).
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Figure D.2: Pressure traces for various tap location for the M3 test condition (R10330).
The same data was used to render Figure 2.18, which is arguably much easier to grasp.
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Figure D.3: Pressure traces for various tap location for the M3.5 test condition
(R10329). The same data was used to render Figure 2.19, which is arguably much
easier to grasp.
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Figure D.4: Pressure traces for various tap location for the M4 test condition (R10344).
The same data was used to render Figure 2.20, which is arguably much easier to grasp.





Appendix E

CFD Software Package

Several different numerical kernels are present in the software package; the kernel

which was used here (UnsteadyEuler option) is accurate to second order in both

spatial and temporal discretization. It is based on a finite volume approach using

the MUSCL Hancock142 scheme for solution-adaptive unstructured meshes, and is

suitable for computation of highly unsteady gas dynamic flows involving localized

flow features102. An approximate Riemann solver (PDSRiemann=2 option) was

used. The software routinely undergoes extensive benchmarking and regression

testing by the author, against both experimental data and the classical solutions

available in CFD literature77,137,143,144.
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Influence Coefficients for Body

Force

Following §I.6, under the quasi-one-dimensional, quasi-steady flow assumptions,

the conservation laws for a system of mass subjected to a constant acceleration

or mass specific force, f , and area variation, dA/dx, can be written as:

dρ

ρ
+

du

u
+

dA

A
= 0 (F.1)

dp+ ρudu = ρfdx (F.2)

dh+
1

2
du2 = fdx (F.3)

Following the approach of Shapiro68, the influence of acceleration source terms on

various flow parameters can be obtained as listed below. Note that the coefficients

to the “independent variable” dA/A must turn out to be identical to those listed

in the first column of68 Table 8.1, pp. 228. Similarly, the extra terms which

appear below should be seen as the “influence coefficients” for the case f 6= 0,

with âdx/L as the “independent variable”; listed together, these coefficients may
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be considered as an additional column to be appended to Shapiro’s table.

dT

T
=

[
−âT∞

T

γ − 1

γ

1

M2 − 1

]
dx

L
−
[
(γ − 1)

M2

M2 − 1

]
dA

A
(F.4)

du

u
=

[
â
T∞
T

1

γ

1

M2 − 1

]
dx

L
+

[
1

M2 − 1

]
dA

A
(F.5)

dM

M
=

[
â

2

T∞
T

γ + 1

γ

1

M2 − 1

]
dx

L
+

[ 1
2

(γ − 1)M2 + 1

M2 − 1

]
dA

A
(F.6)

dc

c
=

[
− â

2

T∞
T

γ − 1

γ

1

M2 − 1

]
dx

L
−
[
γ − 1

2

M2

M2 − 1

]
dA

A
(F.7)

dρ

ρ
=

[
−âT∞

T

1

γ

1

M2 − 1

]
dx

L
−
[

M2

M2 − 1

]
dA

A
(F.8)

dp

p
=

[
−âT∞

T

1

M2 − 1

]
dx

L
−
[
γ

M2

M2 − 1

]
dA

A
(F.9)

where, â = fL/c2
∞ is the non-dimensional acceleration, T is local static tempera-

ture, c is the local speed of sound, ρ is the local mass density, p is the local static

pressure, L is the length of the channel, and M is the local flow Mach number.

The above equations can be integrated starting with prescribed conditions

(ρ(x0), u(x0), p(x0), etc.) at the entrance plane (x0) of a specified channel (given

dA/dx, L, etc.). However, in the context of intake flows, the approach flow condi-

tions are customarily designated by the∞ subscript, as reflected in the above no-

tation. The result of the integration is the steady state spatial profile/distribution

of the above parameters (ρ(x), u(x), p(x), etc. for 0 < x < L). This result can be

used as a check against the numerical implementation of body force term in the

numerical (CFD) codes.

Figures F.1 and F.2 show comparison between Asterix simulation and the

integrated result from the above equations. The first test (Figure F.1) is for
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subsonic inflow in a constant area channel with â = −0.1. This is a rather sensitive

test because the CFD simulation must include proper subsonic outflow boundary

treatment; this is done using the standard pressure boundary condition in Asterix,

and as can be seen, excellent agreement is present with the exact solution. The

second test (Figure F.2) is for a planar constant slope channel with area ratio of

10, inflow Mach number of -3, and â = −5. Again, excellent agreement between

the CFD simulation and the integration of the above exact steady state relations

is evident.

The negative signs accompanying the acceleration, flow velocity and the Mach

number deserve a brief note. The physical situation above corresponds to a body

accelerating rightward, along the conventionally positive x-direction. In the equa-

tions describing the flow however, the negative f term denotes acceleration of a

leftward flow originating on the right; the sign is consistent with the flow going

in a direction opposite to the usual definition for a positive x-axis. Barring signs,

the situation is in every other respect identical to the rightward flow originating

on the left, and aligned with the positive x-axis.
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Figure F.1: Comparison between theory (solid line) and Asterix (CFD, circles). Al =
Ar = 1, â = −0.1, subsonic inflow, exit/back pressure: pb = 1.10451, channel length
L = 1.
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Appendix G

Lifting Isentrope Tests

Here the lifting isentrope model (§5.3.1 on Page 90) is evaluated by direct com-

parison with Asterix. Several cases are reported; in each case, the flow is from

the right, and the solution is compared after accelerating (â = {0.1, 1.0, 10.0}),

from an initial to a final value of free stream Mach number (m∞ = 3 → 4 or

m∞ = 3 → 6). The circles are the correct solution (from Asterix) and the solid

lines are the result of lifting isentrope model. The observations and interpretations

are as follows:

• at the entrance plane of the duct x = L, the solution is known and hence it

must match the exact value;

• for constant area section, Ax = 0 the exact solution is trivial (simple, ho-

mentropic, uniform flow in an accelerated duct);

• for non-uniform area, the error accumulates near x = 0 at the back, but it

is typically very small;

• the error as x → 0 is greater for larger values of â, and may be considered

191
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negligible for low values of â, as expected;

• the error is greater for m∞ = 3→ 4 cases as compared to m∞ = 3→ 6;

• among the tests shown/conducted, the error is the greatest (≈ 15%) for the

m∞ = 1.5→ 2 case and it is reduced dramatically with time, so that in the

m∞ = 1.5→ 3 case there is minimal error.

• the interpretation of these results is that for larger free stream Mach num-

bers, the flow disturbances take a shorter duration to subside (flow adjusts

quickly) making the approximation better;

• it is found that the model is sufficiently accurate for use in intake shock

dynamics.

The variational change in spatial distribution of flow parameters according to

the lifting isentrope can be found using the formulae given under §I.7, along with

∂t(m∞) = f/c∞. For instance, for density we have:

δ

δt
ρ =

δ

δt

ρ∞(1 + γ−1
2
m2
∞

1 + γ−1
2
m2

) 1
γ−1

 (G.1)

=
ρf

c∞

(
m∞

1 + γ−1
2
m2
∞

)(
1− m2(m2

∞ − 1)

m2
∞(m2 − 1)

)

For large m∞ the term in first parentheses scales like 1/m∞ which may explain the

better accuracy for larger m∞. Similarly, the last term gives zero for m = m∞, i.e.,

the above function gives zero variation in the free stream where ρ = ρ∞ = const,

as expected. Far downstream, where m is different from m∞ the variation is the

largest.
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Figure G.1: Comparison between lifting isentrope (approximate) with Asterix (accu-
rate). â = −0.1, m∞ = −(3→ 4).
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Figure G.2: Comparison between lifting isentrope (approximate) with Asterix (accu-
rate). â = −0.1, m∞ = −(3→ 6).
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Figure G.3: Comparison between lifting isentrope (approximate) with Asterix (accu-
rate). â = −1.0, m∞ = −(3→ 4).
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Figure G.4: Comparison between lifting isentrope (approximate) with Asterix (accu-
rate). â = −1.0, m∞ = −(3→ 6).
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Figure G.5: Comparison between lifting isentrope (approximate) with Asterix (accu-
rate). â = −10.0, m∞ = −(3→ 4).
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Figure G.6: Comparison between lifting isentrope (approximate) with Asterix (accu-
rate). â = −10.0, m∞ = −(3→ 6).
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Figure G.7: Comparison between lifting isentrope (approximate) with Asterix (accu-
rate). â = −1.0, m∞ = −(1.5→ 2).
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Figure G.8: Comparison between lifting isentrope (approximate) with Asterix (accu-
rate). â = −1.0, m∞ = −(1.5→ 3).



Appendix H

Empirical Modifications to

CCW+

This appendix contains some of the cases reported in Chapter 7, where it has

been found that CCW+ may be modified in some simple way to allow better

agreement with the more accurate solution of the full Euler equations solved using

Asterix1. These approximations are unjustified in general, and no explanation has

been found for the improved accuracy. These results are reported here for future

reference, and are presented in the spirit of an approximate model modified by

empirical observation. The reader should refer to §7.5 for more details on each

figure.
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Figure H.1: Case II: a left moving diverging channel encounters a right facing shock
wave, Ms ' 3; comparison between modified CCW+ (solid) and CFD (circles); non-
uniform, non-quiescent gas ahead of shock, no body force present (f = 0); m∞ refers
to m(x = L) = const; Smooth geometry model: MD3, IoS = 0.1. The agreement is
considered excellent.
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Figure H.2: Case II: a left moving diverging channel encounters a right facing shock
wave, Ms ' 3; comparison between modified CCW+ (solid) and CFD (circles); non-
uniform, non-quiescent gas ahead of shock, non-zero body force present (f = 10); m∞
refers to m(x = L) = const; Smooth geometry model: MD3, IoS = 0.1. The agreement
is considered good; the key discrepancy appears in J2− and J2+ in the lower-right
subplot.
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Figure H.3: Case VII: Accelerative starting scenario. Intake starts. Comparison
between modified CCW+ (f = 0 in b1 term) and the full solution of the quasi-one-
dimensional governing equations obtained using Asterix. While CCW+ is not singular
and it is able to predict the correct net outcome for this case, the solution must still be
considered poor (or fair at best) in terms of agreement with the more accurate result
from Asterix.
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Figure H.4: Case VII: Accelerative starting scenario. Intake fails to start. Comparison
between modified CCW+ (f = 0 in b1 term) and the full solution of the quasi-one-
dimensional governing equations obtained using Asterix. While CCW+ is not singular
and it is able to predict the correct net outcome for this case, the solution must still be
considered poor (or fair at best) in terms of agreement with the more accurate result
from Asterix.
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Figure H.5: Case VII: Accelerative starting scenario. Intake fails to start. Comparison
between modified CCW+ (f = 0 in b1 term) and the full solution of the quasi-one-
dimensional governing equations obtained using Asterix. While CCW+ is not singular
and it is able to predict the correct net outcome for this case, the solution must still be
considered poor (or fair at best) in terms of agreement with the more accurate result
from Asterix.
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Figure H.6: Case VII: Accelerative starting scenario (MD = 3, IoS = 0.1). Intake
fails to start (f = −3). Comparison between modified CCW+ (f = 0 in b1 term)
and the full solution of the quasi-one-dimensional governing equations obtained using
Asterix. CCW+ is not singular and it is able to predict the correct net outcome for
this case. Similar scenario run for f = −3.5 shows both CCW+ and Asterix predict
started intake. While the net outcome is predicted correctly, the solution details are
not in good agreement for that case.





Appendix I

Forms of the Euler Equations

I.1 Notation

For convenience, the useful forms of the Euler equations are compiled here from

various standard reference texts, including2,68,104,134,137; the various forms have

been transformed to use a consistent notation and it is hoped that this will save

repeated labour.

I.1.1 Physical Variables

x–spatial coordinate; t–temporal coordinate; p–static pressure; ρ–static density;

T–static temp; e–specific energy (sum of internal and kinetic parts); c–speed of

sound; R–specific gas constant (286.9 J/kg K for air); cv and cp are specific heat at

constant volume and at constant pressure, respectively; γ–adiabatic constant (1.4

for air); s–specific entropy; A = A(x)–channel area; f specific force; h–specific en-

thalpy; u–fluid velocity, relative to the channel; us–shock wave velocity, relative to

the channel; Ms–Shock wave Mach number; m1–Mach number upstream of a wave

209
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(signed quantity); m2–Mach number downstream of a wave (signed quantity).

I.1.2 Partial Differentials

The following notation appears commonly in the literature. Subscripts are pre-

ferred in this work for economy of writing, except where confusion may arise (e.g.,

in the context where At is typically used to denote throat area, either (A)t or ∂tA

is the preferred choice).

()t ≡ ∂t() ≡
∂

∂t
() (I.1)

()x ≡ ∂x() ≡
∂

∂x
() (I.2)

I.1.3 Useful Linear Operators

The following differential operators are helpful in transforming between the vari-

ous forms while simultaneously maintaining consistent notation among the set of

equations.

D () ≡ ()t + u ()x (I.3)

D+ () ≡ ()t + (u+ c) ()x (I.4)

= D () + c ()x (I.5)

D− () ≡ ()t + (u− c) ()x (I.6)

= D ()− c ()x (I.7)



I.2. WEAK/INTEGRAL FORM 211

D () =
D+ () + D− ()

2
(I.8)

()x =
D+ ()−D− ()

2c
(I.9)

Dσ () ≡ ()t + us ()x (I.10)

= ()t +
us
2c

(D+ ()−D− ()) (I.11)

= D () + (us − u) ()x (I.12)

= D± () + (us − (u± c)) ()x (I.13)

=
us − (u− c)

2c
D+ ()− us − (u+ c)

2c
D− () (I.14)

Lastly, [()]ba is used for jump conditions from a to b, e.g., across a shock wave.

I.2 Weak/Integral Form

The integral form of the conservation laws can be found in many standard reference

texts, including137.

∂

∂t

∫
Ω

U dΩ +

∮
dΩ

~F · d~n =

∫
Ω

Q dΩ (I.15)

U =


ρ

ρ~u

ρe

 , ~F = U~u+ p


0

I

~u

 , Q =


0

ρ~f

ρ~f · ~u

 , (I.16)
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where the conserved quantities are in U and their fluxes in ~F , directed outward

along the normal ~n at the bounding surface of the control volume Ω. I is the

identity matrix, of rank k in k-dimensional space.

I.3 Strong/Differential Form

The differential form of the conservation laws can be found in many standard

reference texts, including137.

(ρA)t + (ρuA)x = 0 (I.17)

(ρuA)t +
(
ρu2A+ pA

)
x

= pAx + ρAf (I.18)

(ρeA)t + ((ρe+ p)uA)x = ρAuf (I.19)

I.4 Thermodynamic Relations

The following formulae are very useful in transforming the governing equations

into suitable forms; these can be found in many standard references, including104.

p = ρRT (I.20)

= ρ(γ − 1)(e− u2/2) (I.21)
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c2 =

∣∣∣∣∂p∂ρ
∣∣∣∣
s

(I.22)

= γp/ρ (I.23)

= γRT (I.24)

= γ(γ − 1)(e− u2/2) (I.25)

1

ρ
=

∣∣∣∣∂h∂p
∣∣∣∣
s

(I.26)

T =
c2

γR
(I.27)

=
h

Cp
(I.28)

γ = cp/cv (I.29)

R = cp − cv (I.30)

cp =
γR

γ − 1
(I.31)

cv =
R

γ − 1
(I.32)

h = cpT (I.33)

= e− u2/2 + p/ρ (I.34)
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e = cvT + u2/2 (I.35)

=
1

γ − 1

p

ρ
+ u2/2 (I.36)

s− sref = cp lnT/Tref −R ln p/pref (I.37)

= cv lnT/Tref −R ln ρ/ρref (I.38)

= cv ln p/pref − cp ln ρ/ρref (I.39)

= cv ln
p/pref

(ρ/ρref)
γ (I.40)

d (ln p) =
2γ

γ − 1
d (ln c)− 1

R
d (s) (I.41)

d (ln ρ) =
2

γ − 1
d (ln c)− 1

R
d (s) (I.42)

Td (s) = d (h)− 1

ρ
d (p) (I.43)

= d (e)− u d (u) + p d (1/ρ) (I.44)

= d (e)− u d (u)− p

ρ2
d (ρ) (I.45)

= d (e)− u d (u)− c2

γρ
d (ρ) (I.46)

I.5 Substantial Derivatives

Eulerian derivatives for the common sets of variables useful in practical calcula-

tions are included in the following subsections. These can also be used to obtain

the characteristic relations listed in the sections further below.
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I.5.1 Set I: {ρ, u, e}

Simplified case for: A = A(x), so that ∂tA = 0, otherwise, replace uAx/A with

D (lnA); for isentropic flow D (s) = 0, the energy equation follows from (I.46);

the flow need not be homentropic (sx 6= 0).

D (ρ) = −ρ(ux + uAx/A) (I.47)

D (u) = f − px/ρ (I.48)

D (e) = uD (u) +
p

ρ2
D (ρ) (I.49)

Replacing px in the momentum equation using (I.21),

D (u) = f − (γ − 1)
[
(e− u2/2)ρx/ρ+ (ex − uux)

]
(I.50)

and substituting this result into the energy equation,

D (e) = u(f − px/ρ)− (ux + uAx/A)p/ρ (I.51)

= u
[
f − (γ − 1)

{
(e− u2/2) (ln ρuA)x + (ex − uux)

}]
(I.52)
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I.5.2 Set II: {ρ, u, p}

Simplified case for: A = A(x), so that ∂tA = 0, otherwise, replace uAx/A with

D (lnA); isentropic flow D (s) = 0, need not be homentropic (sx 6= 0).

D (ρ) = −ρ(ux + uAx/A) (I.53)

D (u) = f − px/ρ (I.54)

D (p) = c2 D (ρ) (I.55)

= −γp(ux + uAx/A) (I.56)

= −ρc2(ux + uAx/A) (I.57)

I.5.3 Set III: {u, c, s}

Simplified case for: A = A(x), so that ∂tA = 0, otherwise, replace uAx/A with

D (lnA); isentropic flow D (s) = 0, need not be homentropic (sx 6= 0).

D (u) = f − 2ccx/(γ − 1) + c2sx/γR (I.58)

D (c) =
γ

2c

(
ρD (p)− pD (ρ)

ρ2

)
(I.59)

= −(γ − 1)c

2
(ux + uAx/A) (I.60)

D (s) = 0 (I.61)
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I.5.4 Set IV: {ρ, u, h}

Simplified case for: A = A(x), so that ∂tA = 0, otherwise, replace uAx/A with

D (lnA); isentropic flow D (s) = 0, need not be homentropic (sx 6= 0).

D (ρ) = −ρ(ux + uAx/A) (I.62)

D (u) = f − px/ρ (I.63)

D (h) = D (p) /ρ (I.64)

= −(γp/ρ) (ux + uAx/A) (I.65)

= −c2 (ux + uAx/A) (I.66)

I.6 Steady-State Differential Relations

Simplified case for: A = A(x), so that ∂tA = 0; steady-state ∂t{ρ, u, p, h, s} = 0;

for the steady case, D (s) = 0 leads to homentropic flow (sx = 0).

ρx
ρ

+
ux
u

+
Ax
A

= 0 (I.67)

px
ρu2

+
ux
u

=
f

u2
(I.68)

hx +
1

2
(u2)x = f (I.69)

For the non-homogeneous case, f 6= 0, the above equations provide coupled

differential relations for flow quantities in terms of the prescribed geometry. This

is used in the derivation of formulae listed in Appendix F, where exact solutions

are compared with Asterix.

For f = 0, the homogeneous form of the equations leads to the classical one-

dimensional isentropic relations in integrated form, which provide closed form
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solutions. For example the classical area-Mach number relation M = M(A) is

obtained directly from (F.6). With that result, the remaining relations can be

integrated in closed form as ρ = ρ(M,A), etc.

I.7 Steady-State Integrated Relations

The local ratio of static to total temperature, for adiabatic flow in the absence of

body forces [see Eqs. (F.4) and (F.6)], is given in terms of local flow Mach number

by104 pp. 4, Eqs. 43–46:

Ti
Tt

= f(γ,mi) =

(
1 +

γ − 1

2
m2
i

)−1

(I.70)

For speed of sound (in adiabatic flow):

ci
ct

=

(
Ti
Tt

) 1
2

(I.71)

Similarly, for pressure and density (in homentropic flow):

pi
pt

=

(
Ti
Tt

) γ
γ−1

(I.72)

ρi
ρt

=

(
Ti
Tt

) 1
γ−1

(I.73)

Combined with continuity (ρimiciAi = const), the sonic area-Mach number rela-

tion (in isentropic flow) is obtained as104 pp. 6, Eq. 80:

As
Ai

= mi

(
Ti/Tt
Ts/Tt

) 1
2
γ+1
γ−1

, (I.74)



I.8. COMMON CHARACTERISTIC FORMS 219

where, Ts is the sonic temperature evaluated with mi = msonic = 1 in (I.70).

The above formulae are often used to relate two different states connected by

an homentropic process. For example, (A1/A∞) = (A1/As)× (As/A∞):

A1

A∞
=

f(m1)

f(m∞)

=
m∞
m1

(
T∞/Tt
T1/Tt

) 1
2
γ+1
γ−1

. (I.75)

I.8 Common Characteristic Forms

The Euler equations are used in the CCW literature mostly in characteristic form.

However, there is a great variety of notation, variables and assumptions among

the cited literature. The most commonly used variables lead to the following sets.

I.8.1 Set I: {ρ, u, p}

For C+ characteristic direction, replace ± with +. Similarly, for C−, replace ±

with −.

C± : D± (p)±√γpρD± (u) = −γpu
A
Ax ±

√
γpρf (I.76)

C0 : D (p)− γp

ρ
D (ρ) = 0 (I.77)

Dividing by ρc2, and bringing area term on the left hand side, it gives:

C± :
1

c
D± (u)± 1

γp
D± (p)± m

m± 1

D± (A)

A
=
f

c
(I.78)

C0 : D (p)− c2 D (ρ) = 0 (I.79)
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where area differential is to be evaluated using D± (A) = (u± c)∂x(A).

I.8.2 Set II: {ρ, c, u, p}

The two equations above (I.76) commonly appear in the shock dynamics literature,

where they are used as a starting point for establishing the characteristic rule (i.e.,

direct application of the following equations is made in direction of the shock

wave)122 Ch. 8,123 Ch. 6:

C± : D± (u)± 1

ρc
D± (p)± cu

u± c
D± (lnA) = f (I.80)

C0 : D (p)− c2 D (ρ) = 0 (I.81)

Note, the above form of the equations is not recommended for numerical cal-

culations. Strictly speaking, (I.80) is incorrect because the area term is differenti-

ated without an important caveat. The transformation made to obtain this form

is physically invalid when D± (lnA) = 0, or u± c = 0, cf., (I.88).

I.8.3 Set III: {J±, s}

Perhaps the most aesthetically pleasing form is that in which the left hand side

bears the closest resemblance to Riemann’s original work109–111. In any case,

herein it is the mathematically preferred form.

C± : D± (J±) = −
(
±cu
A
Ax

)
+

c2

γR
sx + f (I.82)

= −
(
±γ − 1

8

[
J2
]+
−
Ax
A

)
+

(
γ − 1

4
[J ]+−

)2
1

γR
sx + f (I.83)

C0 : D (s) = 0 (I.84)
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The above relations determine how the characteristic variables (or Riemann’s gen-

eralized non-invariants) must evolve in the presence of non-uniformities; here, the

non-homogeneities include: (i) geometrical effects (Ax 6= 0); (ii) non-homentropic

effects (sx 6= 0); and (iii) forces accelerating the fluid. Note that the first two

equation give time rate of change of velocity (or acceleration or force per unit

mass) experienced by the fluid along special trajectories. The special trajectories

are the characteristic directions along which wave-like disturbances propagate;

this is the hyperbolic nature of the Euler equations.

J± ≡ u± 2

γ − 1
c (I.85)

Note, the first two equations (I.82) may be transformed using the operators of

§I.1.3, to the following equivalent forms (ignoring, for a moment, the difference

stemming from a more general provision for ∂tA):

C± : D± (J±) = −
(
±cu
A
Ax

)
± c

γR
D± (s) + f (I.86)

= −± cD (lnA)± c

γR
D± (s) + f (I.87)

= −± c (D± (lnA)−±c (lnA)x)±
c

γR
D± (s) + f (I.88)

For the case of a vertical C± curve in the wave diagram, i.e., u±c = 0, Eqs. I.88

and I.80 do not agree. The former recovers the correct expression of Eqs. I.82 (let

∂tA = 0), while the later does not. Practical use of that expression, in calculations

with non-trivial flow ahead of the shock wave, may lead at best to loss in precision,

and at worst to a division by zero.

The incorrect form has lead some researchers to incorrectly conclude the be-

haviour of these equations under certain circumstances as describing the familiar

flow choking phenomenon. The common interpretation, surrounding the singu-
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larity, attempts to use (improperly) a steady-state physical concept in a truly

unsteady situation.

I.9 Rankine-Hugoniot Relations

Useful jump relations from104 are stated below for convenience, which appear in

various forms in the CCW literature. These are valid for both left- and right-

facing shock waves.

Note: simplified case of perfect gas; ± signs correspond to right- and left-

facing waves, respectively; νi ≡ us − ui; The basic conditions are: [ρν]21 = 0,

[ρν2 + p]
2
1 = 0, and [h+ ν2/2]

2
1 = 0; Ms ≡ ±(us − u1)/c1 > 1.

The pressure ratio across a shock wave is given by104:

ξ ≡ p2

p1

= f(g,Ms) (I.89)

= 1 +
2γ

γ + 1
(M2

s − 1) (I.90)

∂

∂Ms

(
p2

p1

)
=

4γMs

γ + 1
(I.91)

The density ratio across a shock wave is given by104:

ρ1

ρ2

= f(g,Ms) (I.92)

=
γ − 1

γ + 1
+

2

γ + 1

1

M2
s

(I.93)

∂

∂Ms

(
ρ1

ρ2

)
= − 4

γ + 1

1

M3
s

(I.94)
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The ratio of speeds of sound across a shock wave is given by:

(
c2

c1

)2

= f(γ,Ms) (I.95)

=
p2

p1

ρ1

ρ2

(I.96)

∂

∂Ms

(
c2

c1

)
=

2

γ + 1

(
c2

c1

)−1(
γMs

ρ1

ρ2

− 1

M3
s

p2

p1

)
(I.97)

In terms of Riemann variables for the speeds of sound across the shock, the

following relations are useful:

c1 =
γ − 1

4
[J1]+− (I.98)

c2 =
γ − 1

4
[J2]+− (I.99)

c2

c1

=
[J2]+−
[J1]+−

(I.100)

The ratio of total pressures is a function of γ and Ms only, and is used further

below in the computation of entropy jump across the wave104:

ln

(
pt1
pt2

)
= f(γ,Ms) (I.101)

=
1

γ − 1

[
ln

(
p2

p1

)
+ γ ln

(
ρ1

ρ2

)]
(I.102)

For the change in velocities across a shock wave, the following relations are
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useful:

u1 =
1

2
(J1+ + J1−) (I.103)

u2 =
1

2
(J2+ + J2−) (I.104)

[u]21 =
1

2
([J+ ]21 + [J− ]21) (I.105)

u2

u1

=
J2+ + J2−

J1+ + J1−
(I.106)

[u]21 = f(γ, c1,Ms) (I.107)

= ± 2c1

γ + 1

(
Ms −

1

Ms

)
(I.108)

The change in entropy is given by104:

[s]21 = f(γ,R,Ms) (I.109)

= R ln

(
pt1
pt2

)
(I.110)

∂

∂Ms

(
[s]21
)

=
4γR

γ2 − 1

(
Ms

(
p2

p1

)−1

− 1

M3
s

(
ρ1

ρ2

)−1
)

(I.111)

I.9.1 Shock Velocity & Mach Number Relations

Simplified case for perfect gas; ± signs correspond to right- and left-facing waves,

respectively; ({p2/p1, ρ2/ρ1, c2/c1, γ,Ms} ≥ 1).
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u2 = u1 ±
2c1

γ + 1

(
Ms −

1

Ms

)
(I.112)

us = u1 ±Ms c1 (I.113)

m1 = u1/c1 (I.114)

m2 = u2/c2 (I.115)

M2
s =

1

2γ

[
(γ + 1)

p2

p1

+ (γ − 1)

]
(I.116)

µ ≡ us − u2

c2

=

√
(γ − 1)M2

s + 2

2γM2
s − (γ − 1)

(I.117)

N.B. By definition, for a right-facing wave, the flow enters the wave from the

right side. Also note that a right-facing shock may move either to the left or to

the right; thus, the apparent direction of motion is independent of the facedness.

Additionally, two independent observers agree on the facedness if and only if they

share a proper sense of direction, e.g., if x is positive rightward or leftward for

both. This is true, even when the wave may appear to move leftward relative to

the first observer, and rightward relative to the second observer.
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