There is also the two capacitor paradox to consider. Take a 100 V 100 uF capacitor and attach it to another empty 100 uF capacitor. The energy on the 100 V capacitor is 0.5 J . The two capacitors then equalize voltage so they have 50 V each. The energy on both capacitors is now 0.125 J each, giving a total of 0.25 J . Where did the extra 0.25 J go? If it's possible for the energy to simply disappear, then conversely it must be possible for energy to appear.

The energy on the charged cap before the experiment is

$$
E_{1}=\frac{1}{2} C U^{2}=0.5 \mathrm{~J}
$$

What will the voltage on the two caps be after equalization?

Let's write down the differential equation describing the equalization process and thus see what happens.

$$
U_{1}=R I+U_{2}
$$

in which current I is positive when going clockwise. We then have

$$
\begin{equation*}
\frac{Q_{1}}{C_{1}}=R I+\frac{Q_{2}}{C_{2}} \tag{1}
\end{equation*}
$$

with

$$
\frac{d Q_{1}}{d t}=-I \quad \frac{d Q_{2}}{d t}=I
$$

Let's diferentiate Eq. 1. This gives

$$
\begin{aligned}
\frac{1}{C_{1}} \dot{Q}_{1} & =R \dot{I}+\frac{1}{C_{2}} \dot{Q}_{2} \\
-\frac{1}{C_{1}} I & =R \dot{I}+\frac{1}{C_{2}} I \\
0 & =R \dot{I}+\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right) I
\end{aligned}
$$

$$
\begin{equation*}
\dot{I}+\frac{1}{R}\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right) I=0 \tag{2}
\end{equation*}
$$

That's a homogeneous first order differential equation. Let's solve this with the following approach (educated guess).

$$
\begin{aligned}
I(t) & =I_{0} e^{-k t} \\
\dot{I}(t) & =-I_{0} k e^{-k t}
\end{aligned}
$$

Substituting both into Eq. 2 gives

$$
\begin{aligned}
-I_{0} k e^{-k t}+\frac{1}{R}\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right) I_{0} e^{-k t} & =0 \\
-k e^{-k t}+\frac{1}{R}\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right) e^{-k t} & =0 \\
\left(\frac{1}{R}\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right)-k\right) e^{-k t} & =0
\end{aligned}
$$

This equation is true for all t only if

$$
k=\frac{1}{R}\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right)
$$

This gives us the current for the equalization.

$$
I(t)=I_{0} e^{-\left(\frac{1}{R}\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right)\right) t} \quad \text { with } \quad I_{0}=\frac{U_{0}}{R}
$$

in which U_{0} is the start voltage on the left cap (in your example 100 V) and R is the resistance of the wire connecting the two caps (there always be some although small).

What about the charges on the two caps.
$Q_{1}(t)=-\int I d t$
$Q_{1}(t)=-\int I_{0} e^{-\left(\frac{1}{R}\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right)\right) t} d t$
$Q_{1}(t)=-\left[\frac{1}{-\frac{1}{R}\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right)} I_{0} e^{-\left(\frac{1}{R}\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right)\right) t}\right]_{0}^{t}+C$
$Q_{1}(t)=-\left(\frac{1}{-\frac{1}{R}\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right)} I_{0} e^{-\left(\frac{1}{R}\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right)\right) t}-\frac{1}{-\frac{1}{R}\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right)} I_{0}\right)+C$
$Q_{1}(t)=\frac{1}{-\frac{1}{R}\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right)} I_{0}-\frac{1}{-\frac{1}{R}\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right)} I_{0} e^{-\left(\frac{1}{R}\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right)\right) t}+C$
$Q_{1}(t)=\frac{1}{-\frac{1}{R}\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right)} I_{0}\left(1-e^{-\left(\frac{1}{R}\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right)\right) t}\right)+C$
$Q_{1}(t)=\frac{1}{-\frac{1}{R}\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right)} \frac{U_{0}}{R}\left(1-e^{-\left(\frac{1}{R}\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right)\right) t}\right)+C$
$Q_{1}(t)=-\frac{U_{0}}{\frac{1}{C_{1}}+\frac{1}{C_{2}}}\left(1-e^{-\left(\frac{1}{R}\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right)\right) t}\right)+C$
$Q_{1}(t)=\frac{U_{0}}{\frac{1}{C_{1}}+\frac{1}{C_{2}}}\left(e^{-\left(\frac{1}{R}\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right)\right) t}-1\right)+C$
At $t=0$ we have $Q_{1}=C_{1} U_{0}$ in which $U_{0}=100 \mathrm{~V}$. This gives

$$
\begin{aligned}
& C_{1} U_{0}=\frac{U_{0}}{\frac{1}{C_{1}}+\frac{1}{C_{2}}}(1-1)+C \\
& C_{1} U_{0}=C
\end{aligned}
$$

We finally get

$$
Q_{1}(t)=\frac{U_{0}}{\frac{1}{C_{1}}+\frac{1}{C_{2}}}\left(e^{-\left(\frac{1}{\hbar}\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right)\right) t}-1\right)+C_{1} U_{0}
$$

and by dividing by C_{1}.

$$
U_{1}(t)=\frac{1}{C_{1}} \frac{U_{0}}{\frac{1}{C_{1}}+\frac{1}{C_{2}}}\left(e^{-\left(\frac{1}{R}\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right)\right) t}-1\right)+U_{0}
$$

Figure 1: C_1=100E-6; C_2=100E-6; R=1; U_0=100

This shows that the voltage in fact will be 50 V at the end. So we indeed have only 0.25 J left in the caps!? Where did the remaining 0.25 J go to? Let's see.

$$
U_{R}=R I
$$

$$
\begin{aligned}
& P_{\text {loss }}=R I^{2} \\
& E_{\text {loss }}=\int P_{\text {loss }} d t \\
& E_{\text {loss }}=\int R\left(I_{0} e^{-\left(\frac{1}{R}\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right)\right) t}\right)^{2} d t \\
& E_{\text {loss }}=\int R \frac{U_{0}^{2}}{R^{2}} e^{-2\left(\frac{1}{R}\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right)\right) t} d t \\
& E_{\text {loss }}=\frac{U_{0}^{2}}{R} \int e^{-2\left(\frac{1}{R}\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right)\right) t} d t \\
& E_{\text {loss }}=\frac{U_{0}^{2}}{R}\left[\frac{1}{-2\left(\frac{1}{R}\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right)\right)} e^{-2\left(\frac{1}{R}\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right)\right) t}\right]_{0}^{\infty} \\
& E_{\text {loss }}=\frac{U_{0}^{2}}{R}\left(-\frac{1}{-2\left(\frac{1}{R}\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right)\right)}\right) \\
& E_{\text {loss }}=\frac{1}{2} U_{0}^{2} \frac{1}{\frac{1}{C_{1}}+\frac{1}{C_{2}}}
\end{aligned}
$$

For $C=C_{1}=C_{2}$ we get

$$
E_{l o s s}=\frac{1}{4} C U_{0}^{2}=0.25 \mathrm{~J}
$$

There you have your loss. No paradox at all. :-) If you want to make energy flow into your system you have to come up with negative resistance.

